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ABSTRACT

A traditional formal framework for reasoning about program semantics is

given by calculi, starting from the lambda-calculus developed by Alonzo Church. In

this framework, we propose a technique for proving computational soundness of non-

confluent calculi. Traditionally, there are two ways of reasoning about a program: a

small step operational semantics that defines the meaning of a program and a calculus

that describes program transformations. Computational soundness connects these

two; it states that any transformation expressible in the calculus preserves meaning

with respect to the small-step operational semantics.

The usual technique for proving computational soundness is based on two

well-known properties of a calculus: confluence and standardization. However, this

approach is not applicable to many calculi because of lack of confluence.

The core of the thesis is the presentation of a new technique for proving

computational soundness which does not require confluence of the calculus. The

technique is based on two properties, lift and project, introduced in Machkasova

and Turbak “A Calculus for Link-time Compilation”. The new approach does not

require other properties commonly used in computational soundness proofs, such as

left-linearity and finiteness of developments.
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As an application of the new technique, we propose and study a calculus

of records with mutually recursive components. Such records are used as a model

for programs constructed of separate fragments, or modules. We use this model to

show meaning preservation of program transformations, in particular of cross-module

transformations. The calculus of records lacks confluence, left-linearity, and finiteness

of developments. However, we are able to prove that it satisfies the lift and project

properties, and therefore is computationally sound.

A linking calculus augments the calculus of records with several link-time

operations on modules, such as combining two modules or renaming a component of

a module. We show that it inherits computational soundness from the calculus of

records.
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Chapter 1

Introduction

1.1 Program Transformations

Since the early days of programming there have always been tradeoffs between clarity

and efficiency of programs. The requirements of one are often practically the opposite

of the requirements of the other! For instance, to make a program understandable

for a human being, one tends to define many short functions rather than a few long

ones. However, run-time overhead of a function call makes such a program inefficient.

Similarly, a program written in a good programming style has a separate variable for

each entity it uses, but efficiency requires that variables are reused. Another part

of the equation is how general the program should be. Handling only specific cases

leads to efficiency, but requires program rewriting if a slightly different case needs to

be handled.

In short, tricks used to make a program more efficient often result in awkward

code which is hard to read and practically impossible to modify. On the other hand,

certain elegant programming solutions, such as using recursion, using a lot of short

functions, using higher-order functions, and using intermediate data structures, such

1
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as lists and trees, may result in an inefficient code.

It is true that choosing a good algorithm for large programs is an extremely

important factor in writing efficient software. For instance, if one can replace an

algorithm which is quadratic with respect to the size of the input by a linear one,

the gain is clearly unmatched by small scale optimizations of code. But suppose an

algorithm is chosen, and we need to write a program that implements it. Do we have

to deal with tradeoffs between a good programming style and a good performance?

Or can we have the best of both worlds: write clear readable programs and at the

same time be sure that they are fast?

Actually, to a large extent we can! There are several factors in modern tech-

nology that allow programmers to focus on clarity and good style of code without

worrying about small-scale inefficiencies that might result from it:

• The increase in speed of modern computers makes small-scale differences in

running time of a program practically unnoticeable. However, in real-time and

multi-threaded environment even minor inefficiencies may become significant.

• The second factor that bridges the two goals is the use of optimizing compilers.

Such compilers take code which is readable for a human being, but not neces-

sarily the most efficient, and perform program transformations to guarantee the

efficiency of the program. For instance, functions may be inlined to decrease

the function call overhead, references to variables whose values are constant

may be replaced by the values themselves, a function general enough to handle

many cases may be specialized based on its uses in the program, and complex

intermediate data structures may be removed. The resulting executable re-

covers the efficiency of the program (and in many cases improves it) without

sacrificing the clarity of the original program.
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This work belongs to the realm of the second approach: it deals with program

transformations, in particular with proving that transformations preserve the mean-

ing of the program. Before we look more closely at the way of defining the meaning

of a program, let us look at different kinds of program transformations.

1.1.1 Examples of Program Transformations

Traditionally, compiler writers distinguish between local and global transformations.

Local transformations are performed based on analysis of a small code frag-

ment, such as a basic block. Numerous local transformations are performed by mod-

ern compilers. Some of the most common ones are constant propagation, constant

folding, function inlining, and various optimizations related to loops, such as loop

unrolling, etc. Many local transformations can be thought of as program evaluation

steps performed at compile time.

Global transformations are based on the analysis of the entire program and

often transform the entire program in non-trivial ways. They include, among others,

closure conversion, function specialization, assignment conversion, uncurrying. Some

of them require quite sophisticated program analyses, such as flow analysis.

The applications of our technique described in this work prove meaning-

preservation of certain local transformations. However, it is also possible to handle

a version of garbage collection in this framework, see [MT02]. Garbage collection

is a border-line transformation, since it requires the analysis of the entire program

(in our case, of the entire module), but it is a simple transformation which can be

performed by a program rewrite step. More complex global transformations, such as

closure conversion, which transforms higher-order functions into pairs of a first-order

function and a data structure representing the environment, require proof methods
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of a different nature. Reasoning about such transformations is beyond the scope of

this work.

1.1.2 Meaning Preservation, Computational Soundness

Following a traditional approach of [Plo75, Bar84], we define the meaning of a pro-

gram via small-step operational semantics given by the evaluation relation of the

calculus. The terms are classified with respect to the evaluation relation: a term is

called evaluatable if it can be evaluated further, otherwise it is an evaluation normal

form. Evaluation normal forms are further classified based on their observable prop-

erties. The meaning of a term is defined via the notion of an outcome: an outcome of

a term is the class of its evaluation normal form if it is eventually reached, otherwise

we say that the term diverges.

In addition to the evaluation relation we define calculus rewrite relation (or

just calculus relation), which describes program transformations. The relation sub-

sumes the evaluation relation.

Computational soundness is a property that relates the calculus rewrite rela-

tion and the evaluation relation. The property states that a calculus rewrite step does

not change the meaning (i.e. the outcome) of the term. If computational soundness

holds, then any transformation expressible as a sequence of forward and backward

calculus steps is meaning-preserving. Therefore proving computational soundness of

a calculus immediately justifies a wide variety of local transformations.

1.1.3 Non-confluent Calculi

Traditionally, computational soundness is proven via two well-known calculus prop-

erties: confluence of the calculus relation and standardization.
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However, many calculi which formalize interesting features of the language

lack confluence. Records with mutually recursive components (such as the calculus

introduced in section 2.2.3), calculi with letrec, as in [AK97], calculi which formalize

references and state , and certain calculi with explicit substitution, such as [DL01]

serve as examples. Since confluence is a traditional ingredient of proofs of compu-

tational soundness, the usual technique for computational soundness proofs is not

applicable to calculi which lack confluence.

The main contribution of this work is the development of a new technique

for proving computational soundness that does not require confluence. The new

technique is based on two properties which will call lift and project. We introduce

these properties and show that their combination implies computational soundness

in chapter 3. Chapter 4 gives a general proof of lift and project.

Our main example of a non-confluent calculus is a calculus of recursively

scoped records whose components are labeled terms of a call-by-value calculus. Per-

forming a substitution in a record with two mutually recursive components provides

an example of non-confluence (a similar example was given in [AK97] for a cyclic

calculus).

We apply the new technique to the calculus of recursively scoped records

in chapter 5 and show that the calculus enjoys the computational soundness property

despite the lack of confluence.

1.1.4 Cross-Module Transformations

The calculus of recursively scoped records serves as a model for studying modules. We

extend the calculus of records with a separate kind of labels – hidden labels – which

represent private components of a module. We add the garbage collection operation
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on modules to be able to remove private components which are not referenced in the

module.

In order to model programs consisting of multiple modules we define a linking

calculus on top of the module calculus with the following operations: linking two

modules, renaming a component of a module, hiding a component, and naming

module via link-level let to facilitate module reuse.

The goal of developing the linking calculus is to be able to represent certain

kinds of cross-module transformation as calculus steps and to justify such transfor-

mations via computational soundness of the calculus. Without going into details of

the definition of the linking calculus, we show an example of a cross-module trans-

formation which is represented as a sequence of calculus steps in the linking calculus,

and therefore is meaning-preserving.

The transformation that we consider is cross-module lambda-splitting, a trans-

formation described by Blume and Appel in [BA97] and used in the SML/NJ com-

piler. Suppose a module exports a function named F which may be used in one or

more other modules. We would like to inline F into a module that uses it, but it

may be the case that the definition of F is too large for inlining to be efficient. (If

we consider a calculus with side effects, then side effects may also prevent F from

being inlined.). The proposed solution is to extract from F the expensive part of

its definition, add it to the module as a separately named component Fexp, and fill

the former location of the expensive part by a reference to the name Fexp. This

transformation makes F cheap enough to inline into other modules.

As a concrete example of this technique, consider the following module ex-

pression written in the syntax of our calculus:

[F 7→ λx.C{λy.M ′}]⊕ [X 7→ A{F @ N}].
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Here, C and A are expression contexts – expressions with single holes that are filled

using the squiggly bracket notation. Assume that the expensive part of the definition

of F is λy.M ′, which is assumed to be a closed abstraction (i.e., it has no free

variables). Also assume that the name Fexp does not appear free in C{λy.M ′} or in

A{F @ N}. Then we can extract the expensive part as a separate module component

bound to Fexp and inline F in the second module to yield:

([F 7→ λx.C{Fexp}, Fexp 7→ λy.M ′]⊕ [X 7→ A{λx.C{Fexp} @ N}]){hide Fexp}.

The operator L{hide v} makes a label v exported by expression L inaccessible to

the “outside world”. In the above example, it is used to hide the name Fexp, which

should not be observable outside of the transformed expression. If it were, then the

transformed expression would not be observationally equivalent to the original one,

because a context that uses Fexp would distinguish the original and final expressions.

Cross-module lambda-splitting can be expressed as a sequence of calculus

steps in the linking calculus. Since the linking calculus enjoys computational sound-

ness property, the transformation is meaning preserving.

Computational soundness of the module calculus (i.e. the calculus of records

with hidden labels and garbage collection) and of the linking calculus is proven

in [MT02].

1.2 Plan of the Dissertation

The rest of this disseration is organized as follows:

• Chapter 2 introduces some notations used in the rest of the thesis and defines

the calculi that we consider in this work: the call-by-value and the call-by-name
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λ-calculi and the calculus of records.

• Chapter 3 gives an overview of the traditional technique for proving computa-

tional soundness and introduces the new properties, lift and project. We also

discuss the case when the evaluation is not a function (as in the calculus of

records), and show modifications of the proofs in this case.

• Chapter 4 gives a general proof of lift and project in two cases: the case when

developments have such properties as boundedness, confluence, and standard-

ization (the case of the call-by-value and the call-by-name λ-calculi), and the

case when the developments do not have these properties (the case of the cal-

culus of records). We introduce the notion of γ-developments to handle the

latter case, and use it to prove lift and project.

• Chapter 5 gives the proofs of computational soundness of the term and the

module calculi. We give the sketch of the proof of computational soundness of

the linking calculus. The technical details of the proof are given in [MT02]

• Chapter 6 gives the overview of the linking calculus, demonstrates examples,

and states the main results.

• Chapters 7 and 8 discuss the related work, summarize the work done in the

dissertation and in the related technical report [MT02], and outline directions

for future work.



Chapter 2

Definitions and Overview of

Calculi

2.1 Notations; Main Calculus Relations

In this section we define notations and terminology used in the rest of this work. We

also give some important examples of calculi to which we refer throughout this pre-

sentation. Definitions in this section are somewhat informal and refer to commonly

known notions, such as relation, function, reflexivity, and others.

2.1.1 Mathematical Preliminaries

A binary relation R over sets S and T is a subset of S × T , and the notation x R y

means (x, y) ∈ R. We say x is in the domain of R, written x ∈ dom(R), if and only

if there exists a y such that x R y.

We use R? to stand for the reflexive closure of a binary relation R, R+ to

stand for the transitive closure of R, R∗ to stand for the reflexive, transitive closure

of R, and R= to stand for the reflexive, symmetric, and transitive closure of R. We

9
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sometimes use the abbreviation = for R=. For a relation written as an arrow, →, we

sometimes use ↔ as a synonym for →=.

Let X be a set, and let ⊥ denote an element such that ⊥6∈ X. A sequence of

elements of X is defined as follows:

Definition 2.1.1 (Sequences). Let P stand for the positive integers {1, 2, . . .}. A

sequence S over some set X is a function from P to X ∪ {⊥} such that if S(i) 6=⊥

and j ≤ i then S(j) 6=⊥.

Given a sequence S, let the length of S be 0 if S(1) =⊥, or the largest integer

i such that S(i) 6=⊥, or ω if S(i) 6=⊥ for all i ∈ N. Let x1, . . . , xn denote the sequence

S such that S(i) = xi for i ≤ n and S(i) =⊥X otherwise. We use the symbol ε to

denote a sequence of length 0, and use S1;S2 for concatenation of two sequences. By

definition ε;S = S; ε = S.

2.1.2 Calculus Relations

A small-step operational semantics of a calculus is defined via an evaluation step

relation ==⇒. In order to reason about program transformation, we extend ==⇒ to a

calculus relation −−→. Sometimes we refer to this relation as calculus rewrite relation.

The evaluation relation is contained in the calculus relation (==⇒⊂−−→), and we define

a non-evaluation relation as ◦−−→=−−→ \ ==⇒ (here \ stands for set difference).

We use M , N , and L to range over terms of a calculus. Term denotes the set

of all terms in the calculus. We define a set of terms NF==⇒, called evaluation normal

forms, as follows: M ∈ NF==⇒ if and only if there is no term N such that M ==⇒ N .

Similarly, the set NF−−→ called calculus normal forms is defined the following way:

M ∈ NF−−→ if and only if there is no N such that M −−→ N .
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2.2 Definitions of Calculi

In this section we define three calculi that we will use throughout this presentation:

a call-by-value λ-calculus with constants, a call-by-name λ-calculus with constants,

and our main application: a calculus of records with recursive components.

2.2.1 Call-by-value λ-calculus

M,N,L ∈ Term ::= c | x | (λx.M) |M1 @M2 |M1 op M2

V ∈ Value ::= c | x | λx.M

C ∈ Context ::= 2 | (λx.C) | C @M |M @ C | C opM |M op C

E ∈ EvalContext ::= 2 | E @M | (λx.M) @ E | E opM | c op E

(λx.M ) @ V Ãv M [x := V ]

c1 op c2 Ãv c, where c = δ(op, c1, c2) if δ(op, c1, c2) is defined,

E{R} ==⇒v E{Q}, where RÃv Q,

C{R} −−→v C{Q}, where RÃv Q.

Figure 2.1: Call-by-value λ-calculus

As an example, consider the call-by-value λ-calculus with constants. The

calculus is defined on figure 2.1. The calculus is traditional (see [Plo75]). However,

unlike [Plo75], we use evaluation contexts (a notion introduced in [FF86]) to define

an evaluation step.

Definitions of terms and values are as usual. ==⇒v and −−→v denote the eval-

uation step and the calculus reduction step, respectively, of this calculus. In order

to define ==⇒v and −−→v, we define two kinds of contexts: a general context C and an

evaluation context E. C{M} denotes the result of filling the hole 2 in a context C

with a term M . The same notation is used for evaluation contexts E.
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We define a so-called notion of reductionÃv, which is used to define ==⇒v and

−−→v. Using Ãv and the two kinds of contexts, we define ==⇒v and −−→v.

In the further discussion we omit the subscripts of the relations of a calculus

when they are clear from context. For instance we write −−→ instead of −−→v whenever

it is unambiguous which calculus the relation belongs to.

According to the rules in figure 2.1, the following are evaluation steps:

(λx.x) @ (λy.y) ==⇒ λy.y,

(λx.x) @ (2 + 3) ==⇒ (λx.x) @ 5,

((λx.x) @ (λy.y)) @ ((λz.z) @ (λw.w)) ==⇒ (λy.y) @ ((λz.z) @ (λw.w)).

These are non-evaluation steps:

(λx.2 + 3) @ (λy.y) ◦−−→ (λx.5) @ (λy.y),

((λx.x) @ (λy.y)) @ ((λz.z) @ (λw.w)) ◦−−→ ((λx.x) @ (λy.y)) @ (λw.w).

Both evaluation and non-evaluation steps are calculus reduction steps, so each of the

four reductions above is an instance of −−→.

Both an evaluation step and a calculus step are defined by specifying a subterm

that gets reduced (denoted by R in the rules) and the context which surrounds the

subterm. The context is not changed by the reduction. The term that gets reduced

is refered to as a redex. A precise definition of a redex is calculus-dependent. For

instance, in the call-by-value calculus defined above, redexes are terms of the form

(λx.M) @ V and c1 op c2 if δ(op, c1, c2) is defined. Section 4.2.2 gives a more formal

discussion of redexes.
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M,N,L ∈ Term ::= c | x | (λx.M) |M1 @M2 |M1 op M2

V ∈ Value ::= c | x | λx.M

C ∈ Context ::= 2 | (λx.C) | C @M |M @ C | C op M |M op C

E ∈ EvalContext ::= 2 | E @M | E opM | c op E

(λx.M ) @ N Ãn M [x := N ]

c1 op c2 Ãn c, where c = δ(op, c1, c2) if δ(op, c1, c2) is defined,

E{R} ==⇒n E{Q}, where RÃn Q,

C{R} −−→n C{Q}, where RÃn Q.

Figure 2.2: Call-by-name λ-calculus

2.2.2 Call-by-name λ-calculus

The call-by-name λ-calculus with constants is defined in figure 2.2. It is also a

traditional calculus defined in [Plo75].

The terms, values, and general contexts C in this calculus are the same as

in the call-by-value one. However, the notion of reduction and evaluation contexts

reflect the call-by-name nature of the calculus. We use the subscript n to denote

relations in the call-by-name calculus. As before, we omit the subscript whenever it

is unambiguous.

Examples of evaluation steps in the call-by-name calculus:

(λx.x) @ (λy.y) ==⇒ λy.y,

(λx.x) @ (2 + 3) ==⇒ 2 + 3,

((λx.x) @ (λy.y)) @ ((λz.z) @ (λw.w)) ==⇒ (λy.y) @ ((λz.z) @ (λw.w)).
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Examples of non-evaluation steps:

(λx.x) @ (2 + 3) ◦−−→ (λx.x) @ 5,

((λx.x) @ (λy.y)) @ ((λz.z) @ (λw.w)) ◦−−→ ((λx.x) @ (λy.y)) @ (λw.w).

2.2.3 Calculus of Records

A calculus of records is defined over a calculus of terms (see figure 2.3): a call-by-

value calculus with constants and labels. Labels in terms, denoted l, are used to refer

to another component of the record; they do not affect the reductions in the term

calculus itself. Note that labels are not considered values. We use subscript T for

relations in the term calculus.

M,N,L ∈ Term ::= c | x | l | (λx.M) |M1 @M2 |M1 opM2

V ∈ Value ::= c | x | λx.M

C ∈ Context ::= 2 | (λx.C) | C @M |M @ C | C opM |M op C

E ∈ EvalContext ::= 2 | E @M | (λx.M) @ E | E opM | c op E

(λx.M) @ V ÃT M [x := V ]

c1 op c2 ÃT c, where c = δ(op, c1, c2) if δ(op, c1, c2) is defined,

E{R} ==⇒T E{Q}, where RÃT Q,

C{R} −−→T C{Q}, where RÃT Q.

Figure 2.3: Term calculus for the calculus of records

An example of evaluating a term with a label is the following:

(λx.l) @ 2 ==⇒ l.

We define free variables of a term M as follows:
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Definition 2.2.1 (Free variables in term calculus). The set of free variables of

a term M , written FV(M), is defined as follows:

FV (x) = {x},

FV (c) = ∅,

FV (l) = ∅,

FV (λx.M) = FV (M) \ {x},

FV (M1 @ M2) = FV (M1) ∪ FV (M2),

FV (M1 op M2) = FV (M1) ∪ FV (M2).

Note that labels are not variables, and therefore are not included in the set

of free variables. Also note that λ does not bind labels, only variables.

D ∈ Term ::= [l1 7→M1, . . . , ln 7→Mn] (abbreviated [li
n
7→
i=1

Mi]),

provided
i≤n
⋃

i=1
FV (Mi) = ∅ and li = lj implies i = j,

D ∈ Context ::= [l 7→ C, l1 7→M1, . . . , ln 7→Mn]

G ∈ EvalContext ::= [l 7→ E, l1 7→M1, . . . , ln 7→Mn]

Projection Notation:

[li
n
7→
i=1

Mi] ↓ lj =Mj , if 1 ≤ j ≤ n, and otherwise undefined.

G{R} ==⇒C G{Q}, where RÃT Q.

G{l} ==⇒C G{V }, where G{l} ↓ l = V .

D{R} −−→C D{Q}, where RÃT Q.

D{l} −−→C D{V }, where D{l} ↓ l = V .

Figure 2.4: Calculus of records

Having defined the term calculus, we now define the calculus of records. The
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formal definition is given in figure 2.4. A record consists of mutually recursive com-

ponents labeled by distinct labels. Each label is bound to a term in the term calculus.

The components are unordered.

D and G are the context and the evaluation context for records, respectively.

They are defined via the corresponding contexts of the term calculus: a module

context is a record where a term in one of the components is replaced by a term

context, C for a record context D, and E for a record evaluation context G. Module

contexts serve the same purpose as in the call-by-value and call-by-name calculi: they

facilitate definition of an evaluation step and a calculus reduction step. Note that

these contexts are filled with terms of the term calculus (defined in figure 2.3).

The notations D{M} and G{M} imply that the result of filling the context

with the term is a well-formed record, i.e. D{M} ∈ Term, where Term is as defined

in figure 2.4.

Relations in the record calculus are annotated by a subscript C (an historical

artifact from the original name, “core module calculus”).

The following reduction sequence (with omitted subscripts) illustrates differ-

ent kinds of reductions on records1:

[A 7→ 2 + 3, B 7→ (λx.x ∗ (4 + A)) @ A]

==⇒ [A 7→ 5, B 7→ (λx.x ∗ (4 + A)) @ A]

◦−−→ [A 7→ 5, B 7→ (λx.x ∗ (4 + 5)) @ A]

◦−−→ [A 7→ 5, B 7→ (λx.x ∗ 9) @ A]

==⇒ [A 7→ 5, B 7→ (λx.x ∗ 9) @ 5]

==⇒ [A 7→ 5, B 7→ 5 ∗ 9]

==⇒ [A 7→ 5, B 7→ 45]

1We use capital letters for labels in examples.
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Note that some abstractions may be substituted into themselves:

[F 7→ λx.F ] ◦−−→ [F 7→ λx.(λx.F )] ◦−−→ [F 7→ λx.(λx.(λx.(λx.F )))]

This is a non-evaluation step, since F appears under a λ.



Chapter 3

Computational Soundness

3.1 Classification and Class Preservation

The notions of classification of terms and class preservation formalize important

features of calculi which have been used in the literature for computational soundness

proofs, but are rarely, if ever, made explicit. We find that formalizing the class

preservation property clarifies computational soundness proofs. For example, the

proofs in sections 3.3–3.4 illustrate the use of class preservation.

An evaluation relation of a calculus partitions all terms into two categories:

those that can be evaluated and those that are normal forms with respect to evalua-

tion. For instance, in a call-by-value λ-calculus, a term (λx.x) @ (λy.y) evaluates to

(λy.y), whereas a term λz.((λx.x) @ (λy.y)) is in a normal form w.r.t. evaluation.

Note that the latter term has a calculus redex, but not an evaluation redex, since the

redex is under a λ. A classification function allows us to further characterize terms

by their meaning in the calculus. In particular, it makes sense to classify evaluation

normal forms, since the meaning of a term in our framework is given by a small-step

operational semantics.

18
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Example 3.1.1. As an example, consider a classification of terms in the call-by-value

λ-calculus with constants defined in section 2.2.1. A similar classification was used

by Plotkin in [Plo75]. The classification distinguishes the following classes of terms:

1. evaluatable terms, i.e. those in the domain of the evaluation relation ==⇒,

2. λ-abstractions (all abstractions are joined in one class),

3. constants, where each constant in the calculus forms its own class, for instance

3 and 5 belong to different classes,

4. errors, which are terms that do not belong to any of the above classes. For

instance, a term 3 @ 5 is an error, because it cannot be evaluated further, but

is not a constant or a λ-abstraction. So is a term (λx.x) + 3, where + is an

addition of two integers. All errors are joined in one class.

In the above classification we distinguish between constants and abstractions

because these terms have different semantics in the language (for instance, an ab-

straction can be applied to an argument, but a constant cannot). We also distinguish

between different constants, because the meaning of one constant is different from the

meaning of another one. We cannot distinguish between two λ-abstractions, because

the behavior of a λ-abstraction can be observed only by applying this abstraction to

various values. Constants and λ-abstractions are referred to as values, i.e. “good”

results of evaluation. The remaining class errors contains “bad” results of evalua-

tion, i.e. terms that are not values, but cannot be evaluated further. Sometimes such

terms are called stuck. However, we use a term “stuck” for another class of terms in

our calculus , so we call such terms “errors”.
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The classification for the record calculus is formally defined later in sec-

tion 5.2.7. Examples of classification from other calculi in the literature are discussed

in chapter 7.

A classification of terms in a calculus is formalized via a classification function

Cl which maps terms to a set of tokens, some of which are parameterized over a set

of values. A set of tokens for this example may be defined as evaluatable, abs,

const(n) for each integer number n, and error. We assume that such a set of

tokens and a classification function are part of the definition of a calculus. The set

of classification tokens of a calculus must have at least two tokens, one of which is

evaluatable, and a classification function must satisfy the following condition:

Property 3.1.2. Cl maps every evaluatable term (and no evaluation normal form)

to evaluatable.

The way in which evaluation normal forms are divided into classes (in par-

ticular, which normal forms are considered “good” results of evaluation, and which

ones are “bad”, i.e. errors) depends on the intended meaning of terms.

Given a classification in a calculus, we expect that the non-evaluation relation

of the calculus preserves the classification. We call this property class preservation:

Definition 3.1.3 (Class Preservation). A calculus has the class preservation

property if M ◦−−→ N implies Cl(M) = Cl(N).

Example 3.1.4. Given a call-by-value λ calculus with constants and a classification

as in example 3.1.1, consider the following non-evaluation steps:

1. λx.2 + 3 ◦−−→ λx.5. The class of both terms is abs.

2. (λx.2 + 3) @ 7 ◦−−→ (λx.5) @ 7. Both terms are evaluatable.
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3. ((λx.x) @ (λy.y)) @ ((λz.z) @ 3) ◦−−→ ((λx.x) @ (λy.y)) @ 3. Both terms are

evaluatable, and in both terms the next thing to be evaluated is the operator.

4. 1 @ (4 + 3) ◦−−→ 1 @ 7. Assuming the evaluation relation for the call-by-value λ-

calculus as defined in section 2.2.1, both terms are errors, because they cannot

be evaluated further.

Non-evaluation steps in this calculus correspond to a reduction under a lambda or a

reduction of the operand of an application before the operator. The above examples

illustrate that such reductions do not change the next redex to be performed by

evaluation and cannot create an evaluation redex if it does not exist in the original

term. It is straightforward to prove the class preservation property for this calculus,

but we are not going to do so here.

The class preservation property has two important implications:

1. If a term is an evaluation normal form, then any sequence of reduction steps

originating at the term must consist purely of non-evaluation steps and end in

another normal form of the same class.

2. A non-evaluation reduction sequence cannot change an evaluatable term to an

evaluation normal form, and vice versa.

These implications are formalized via the following lemmas:

Lemma 3.1.5. If the calculus has class preservation, M is an evaluation normal

form, and M −−→∗ N , then each step in M −−→∗ N is a non-evaluation step and

Cl(M) = Cl(N).

Proof. By induction on the number of steps n in M −−→∗ N . If n = 0, the result

is trivially true. For n > 0, M −−→ M ′ −−→∗ N . By the induction hypothesis, each



22

step in M ′ −−→∗ N is a non-evaluation step and Cl(M ′) = Cl(N). Since M is an

evaluation normal form, the step M −−→ M ′ must be a non-evaluation step, and by

class preservation, Cl(M) = Cl(M ′).

Lemma 3.1.6. If the calculus has class preservation and M ◦−−→∗ N , then M is an

evaluation normal form if and only if N is.

Proof. It is easy to show that Cl(M) = Cl(N) by induction on the number of steps

M ◦−−→∗ N . Suppose thatM is not an evaluation normal form; then by property 3.1.2

and class preservation, evaluatable = Cl(M) = Cl(N) = evaluatable, so N is not

an evaluation normal form. A similar argument shows that if M is an evaluation

normal form, then so is N .

Classification of a term characterizes its current state with respect to evalu-

ation. A related notion of an outcome characterizes the “ultimate fate” of a term

from the point of view of evaluation: does the evaluation of the term converge, and,

if yes, to which kind of a normal form? Outcome is defined as follows:

Definition 3.1.7 (Outcome). The total function Outcome maps a term M to the

classification of its evaluation normal form Cl(Eval(M)) if it exists, and to the symbol

⊥ otherwise.

Intuitively, classification and outcome characterize the observable behavior of

a term.
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3.2 Computational and Observational Soundness

3.2.1 Computational Soundness Property

Definition 3.2.1 (Computational soundness). A calculus is computationally

sound if M ↔ N implies Outcome(M) = Outcome(N).

Computational soundness relates the calculus relation to evaluation: a cal-

culus step preserves the meaning of a term as defined via small-step operational

semantics, i.e. evaluation.

Note that outcome is defined as the class of the evaluation normal form if

it exists. This means that the meaning is preserved up to the classification in the

calculus. For instance, according to the classification presented above, any two λ-

abstractions in the call-by-value calculus have the same meaning.

The next section introduces a more familiar notion of observational equiva-

lence and observational soundness and shows that observational soundness is implied

by computational soundness under certain natural conditions.

3.2.2 Compatible Closure, Observational Soundness

Observational soundness is a familiar property which is traditionally used to justify

program transformations. It states that two terms related in the calculus have the

same behavior in any one-hole context. Observational soundness is implied by com-

putational soundness if the calculus relation is compatibly closed (see lemma 3.2.4).

Definition 3.2.2 (Observational Soundness). A calculus is observationally sound

ifM ↔ N implies that, for any context C, Outcome(C{M}) = Outcome(C{N}).

Definition 3.2.3 (Compatible closure). If −−→ is a relation in a calculus, then

the compatible closure of −−→, denoted −−→C, is a relation defined as follows: M−−→CN
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if and only if there exist C, M1, and N1 such that M1 −−→ N1, M = C{M1}, and

N = C{N1}. A relation −−→ is called compatibly closed if −−→= −−→C.

Lemma 3.2.4. If the calculus relation −−→ is compatibly closed, then computational

soundness implies observational soundness.

Proof. Follows directly from definitions 3.2.1, 3.2.2, and 3.2.3.

Placing terms into arbitrary contexts allows us to distinguish two λ-abstractions

in a λ-calculus. As a simple example, consider λx.2 and λx.5 in the call-by-value

calculus. The class of both terms is abs, but we can distinguish them by applying

them to any value, say to a term 1. On the other hand, λx.x + x and λx.2 ∗ x behave

the same way in any context.

Definition 3.2.2 can be generalized to a two-level calculus in the case when

terms of one calculus fill in contexts of the other. An example of such a relation

between calculi is terms of the term calculus filling contexts D in the calculus of

records. For instance, a context D = [A 7→ 2 + 2] can be filled by terms of the

term calculus, such as 3 or λx.x @ 5. This scenario can be formalized by extending

definition 3.2.2 to define observational soundness of one calculus in another one (in

this example, of the term calculus in the module calculus). See [MT02] for a formal

definition and details.

Also note that, in the current presentation, there are no contexts in which

records can be placed. In [MT02] we define one-hole contexts which are sets of

record bindings. Such contexts can be filled with other records, and in this framework

we can define compatible closure of the calculus relation of the calculus of records.

In chapter 6, we introduce a linking calculus in which linking contexts can be filled

with modules (i.e., records).
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3.3 A Classical Technique for Proving Computa-

tional Soundness

In this section we review the traditional approach to proving computational sound-

ness. This technique has been applied by Plotkin in [Plo75] to show the computa-

tional soundness of call-by-value and call-by-name λ-calculi. The traditional “recipe”

for proving the computational soundness of a calculus has three “ingredients”:

1. Confluence (see definition 3.3.2);

2. Standardization (see definition 3.3.4);

3. The class preservation property defined in definition 3.1.3.

Below, we define the first two properties and show the traditional proof of computa-

tional soundness.

3.3.1 Confluence

Confluence is a classical property that holds for many calculi, both traditional, such

as call-by-value or call-by-name λ-calculus, and new ones, such as the call-by-need

calculus introduced in [AFM+95]. The lack of confluence of the calculus of recursively

scoped records considered here motivated our development of a new technique for

proving computation soundness (see section 3.4).

Definition 3.3.1 (Confluence of a Relation). A relation−−→ is confluent ifM1 −−→
∗

M2 and M1 −−→
∗ M3 imply that there exists M4 such thatM2 −−→

∗ M4 andM3 −−→
∗ M4

(see figure 3.1).

Definition 3.3.2 (Confluence of a Calculus). A calculus is confluent if its cal-

culus relation −−→ is confluent.



26

M1

M2 M3

M4

∗

∗

∗

∗

M1 M2

M3

∗

∗

∗

Confluence Standardization

Figure 3.1: Confluence and standardization.

Our proofs of computational soundness use the following well-known property

of a confluent relation:

Lemma 3.3.3. If a relation −−→ is confluent and M ↔ N , then there exists a term

L such that M −−→∗ L and N −−→∗ L.

Proof. The proof is traditional; see the proof of theorem 3.1.12 in [Bar84].

3.3.2 Standardization

Standardization traditionally refers to a property of a calculus that requires every

reduction sequence M −−→∗ N to be equivalent (in the calculus) to a sequence fromM

toN in which the reduction steps are performed in a “standard” order. The definition

of “standard order” depends on a particular calculus. However, a standard sequence

usually has the following two properties (as applicable to a particular calculus):

• if a term reaches a value by some reduction sequence, then it reaches a value

by a standard sequence;

• for a calculus where the meaning of a term is defined via a small-step oper-

ational semantics, a standard reduction sequence first performs all the “stan-

dard” steps, i.e. those corresponding to the operational semantics, possibly

followed by some “non-standard” steps, i.e. those that do not change the
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observable behavior of a term (for instance, steps performed under a λ in a

λ-calculus).

In a calculus where the calculus relation is partitioned into an evaluation

relation and a non-evaluation relation, “standard” steps are evaluation steps, and

“non-standard” steps are non-evaluation steps. In this presentation, we use the

following definition of standardization, which captures both of the above properties:

Definition 3.3.4 (Standardization). A calculus has the standardization property

if, for any sequence M1 −−→
∗ M2, there exists M3 such that M1 ==⇒∗ M3 ◦−−→

∗ M2

(see figure 3.1).

Definition 3.3.5 (Standard Sequence). A sequence of the form M1 ==⇒∗ M3 ◦−−→
∗

M2 is called standard.

In section 7.2 we discuss definitions of the standardization property used in

the literature in more detail and compare them to our definition.

3.3.3 Computational Soundness of a Confluent Calculus

Below, we present a traditional proof of computational soundness based on confluence

and standardization.

Theorem 3.3.6 (Computational Soundness via Confluence). If −−→ is conflu-

ent and the calculus has the standardization and class preservation properties, then

the calculus is computationally sound.

Proof. Assume that M ↔ N . We show that Outcome(M) = Outcome(N) by con-

sidering the following two cases:
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1. Outcome(M) 6= ⊥: As shown in figure 3.21, M ==⇒∗ M1 = Eval(M). By

confluence of −−→ and lemma 3.3.3, there exists a term L such that M1 −−→
∗ L

and N −−→∗ L. Since M1 ∈ NF==⇒, by class preservation and lemma 3.1.5,

M1 ◦−−→
∗ L. By standardization, N −−→∗ L implies that there exists a term N1

such that N ==⇒∗ N1 ◦−−→
∗ L. Since M1, L, and N1 are connected only by ◦−−→

steps, class preservation implies Cl(M1) = Cl(L) = Cl(N1), and property 3.1.2

implies that N1 ∈ NF==⇒ since M1 ∈ NF==⇒. So N1 = Eval(N), and Cl(N1) =

Cl(M1).

2. Outcome(M) = ⊥: If Eval(N) exists, then by the above argument we could

show that Eval(M) also exists. So, by contradiction, Outcome(N) = ⊥.

M M1

N L

N1

∗

∗

∗

∗

∗

stuff

Let M1 = Eval(M). Then
Cl(M1) = Cl(L) = Cl(N1), hence
N1 = Eval(N), hence
Outcome(M) = Outcome(N)

stuff

Figure 3.2: Sketch of the traditional proof of computational soundness.

1In diagrams here and below, arrows marked with an asterisk denote reflexive, transitive closures
of the respective relations, and a line with arrows on both ends denotes the reflexive, symmetric,
transitive closure of the respective relation. Solid lines denote given relations, while dashed lines
denote relations whose existence is implied by the the proofs. Dotted lines denote relations that
cannot be constructed.
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3.4 Our Technique (High-level View)

Traditionally, proofs of computational soundness (such as the one in the previous

section) requirethe confluence of −−→. But what if −−→ is not confluent? We propose a

technique that allows proving computational soundness in some calculi that lack con-

fluence. In chapter 5, we apply this technique to prove the computational soundness

of a calculus of recursively scoped records.

The technique is based on the following observation. An inspection of the

proof of theorem 3.3.6 reveals that the confluence of −−→ is stronger than what is

actually required for the proof to go through. The fact that one side of the commu-

tative square in figure 3.2 consists purely of evaluation steps rather than arbitrary

calculus reduction steps suggests that a weaker form of “confluence” might suffice:

one that only takes into account interactions between calculus steps and evaluation

steps. Our novel technique for proving computational soundness replaces confluence

of −−→ and standardization of the calculus by a pair of properties that we call lift and

project, which constitute weaker requirements for a computational soundness proof.

3.4.1 Lift and Project Properties

The lift and project properties are defined below and depicted in figure 3.3.

M M1

lift

N N1

∗

∗

∗

M M1

project M2

N N1

∗

∗

∗

∗

Figure 3.3: The lift and project properties.
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Definition 3.4.1 (Lift). A calculus has the lift property if for any reduction sequence

M ◦−−→ N ==⇒∗ N1 there exists a sequence M ==⇒∗ M1 ◦−−→
∗ N1.

Definition 3.4.2 (Project). A calculus has the project property ifM ◦−−→ N ,M ==⇒∗

M1 implies that there exist terms M2 and N1 such that M1 ==⇒∗ M2, N ==⇒∗ N1, and

M2 ◦−−→
∗ N1.

(λy.(y @ 1) + (y @ 6)) @ (λx.2 + 3) ((λx.2 + 3) @ 1) + ((λx.2 + 3) @ 6)

((λx.5) @ 1) + ((λx.2 + 3) @ 6)

(λy.(y @ 1) + (y @ 6)) @ (λx.5) ((λx.5) @ 1) + ((λx.5) @ 6)

(I)

(∗)

(II)

Figure 3.4: Example of lift and project: one-step evaluation sequence.

Example 3.4.3 (Lift and Project, one evaluation step). Consider a term

(λy.(y @ 1) + (y @ 6)) @ (λx.2 + 3) in a call-by-value λ-calculus with constants and

a non-evaluation reduction of 2 + 3 to 5, as shown on figure 3.4. We underline 2 + 3

on the figures to make it easier to trace this redex in the diagrams. Figure 3.4

illustrates both lift and project properties:

• Lift: Suppose that we are given the non-evaluation step (*) and the evaluation

step (II) in figure 3.4. Then the term ((λx.2 + 3) @ 1) + ((λx.2 + 3) @ 6) is

the term whose existence is guaranteed by the lift property (denoted by M1

in property 3.4.1 and on figure 3.3).

• Project: If the evaluation step annotated by (I) is given, together with the non-

evaluation step (*), then the terms ((λx.2 + 3) @ 1) + ((λx.2 + 3) @ 6) and

((λx.5) @ 1) + ((λx.5) @ 6) serve as witnesses M2 and N1, respectively, for the
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project property (see property 3.4.2 or figure 3.3 for notations). Note that

the term ((λx.2 + 3) @ 1)+ ((λx.2 + 3) @ 6) serves as both M1 and M2, in the

notations of property 3.4.2.

It is easy to see in figure 3.4 that both non-evaluation steps in the right-hand

side reduce underlined copies of the non-evaluation redex 2 + 3, which was reduced

in the left-hand side of the diagram. Incidentally, this is always the case in the lift

and project properties: if we mark the original non-evaluation redex in the left-hand

side of the diagram (i.e. the redex of the reduction M ◦−−→ N in both diagrams

in figure 3.3), then the vertical reduction in the right-hand side of the diagrams

in figure 3.3 always reduces underlined copies (i.e. residuals) of that redex. We

discuss this property of lift and project in chapter 4, where we also give a formal

definition of a redex and a residual.

(λy.(y @ 1) + (y @ 6)) @ (λx.2 + 3) 2 + 3 + ((λx.2 + 3) @ 6)

5 + ((λx.2 + 3) @ 6)

(λy.(y @ 1) + (y @ 6)) @ (λx.5) 5 + ((λx.5) @ 6)

(III)
∗

(∗)

(IV )
∗

Figure 3.5: Example of lift and project: two-step evaluation sequence.

Example 3.4.4 (Lift and Project, two evaluation steps). This example

shows the case when some of the vertical reduction steps in the right-hand side of the

diagrams are evaluation steps. Consider the extension of the evaluation sequences

(I) and (II) in figure 3.4 in example 3.4.3 by another step. The result is shown

in figure 3.5. As in the previous example, we illustrate both lift and project:
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• Lift: If we assume the existence of the reduction of 2 + 3 to 5 in the original

term (i.e. the non-evaluation reduction (*)) and of the evaluation sequence

(IV), then the term 5 + ((λx.2 + 3) @ 6) serves as a witness M1 for the lift

property. Note that the evaluation sequence to M1 from the original term

(λy.(y @ 1) + (y @ 6)) @ (λx.2 + 3) consists of 3 steps: two steps in the se-

quence (III) and the step 2 + 3 + ((λx.2 + 3) @ 6) ==⇒ 5 + ((λx.2 + 3) @ 6)

which reduces a marked copy of the redex 2 + 3. This copy of the redex has

become an evaluation redex.

• Project: Now suppose we are given the non-evaluation reduction (*) and the

evaluation sequence (III). Then the terms 5+((λx.2 + 3) @ 6) and 5+((λx.5) @ 6)

serve as the witnesses M2 and N1 (respectively) for the project property. Note

that in this case M1 6= M2, because one of the marked copies of 2 + 3 is now

an evaluation redex.

One may notice that the lift and project properties are slightly asymmetric

(see figure 3.3): the lift diagram is completed by two reduction sequences and re-

quires just one term as a witness, but the project diagram requires three sequences

and two terms as witnesses to complete. This is because a non-evaluation redex

can have an evaluation redex as a residual (as has been illustrated by the example

above). Since evaluation steps reducing the residuals of the original non-evaluation

redex occur only in the evaluation sequence originating at the term M , but not in

the evaluation sequence from N , where the non-evaluation redex has already been

reduced (and therefore does not have residuals), the evaluation sequence fromM may

have more steps than the corresponding sequence from N (in the second part of the

example above the former sequence has 3 steps, and the latter has 2). Such “extra”
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evaluation steps are incorporated into the evaluation sequence constructed in lift,

but since an evaluation sequence from the original term is given in project, it may

be needed to extend this sequence by the reduction of “evaluation” residuals of the

non-evaluation redex be be able to complete the diagram. This case is demonstrated

by example 3.4.4.

3.4.2 Computational Soundness of a Non-confluent Calculus

The proof of computational soundness via lift and project has a different flavor than

that used in theorem 3.3.6. The lift and project properties allow us to show directly

that a non-evaluation step preserves the outcome of a term.

When evaluation is a function, as in the call-by-value and call-by-name λ-

calculi, evaluation steps trivially preserve outcome of a term. In section 3.5 we

extend our framework to calculi in which evaluation is not a function.

M
M1 =

Eval(M)

project M2

N N1

∗

∗

∗

M
M1 =

Eval(M)

lift

N N1

∗

∗

∗

(a) (b)

Figure 3.6: Proof of soundness via lift and project.

The following theorem embodies our new approach to proving computational

soundness:

Theorem 3.4.5 (Computational Soundness via Lift and Project). If the cal-

culus has the lift, project, and class preservation properties, then it is computationally

sound.
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Proof. Assume that M ↔ N . We show that Outcome(M) = Outcome(N) by the

following two cases:

1. Outcome(M) 6= ⊥: We show the result for the case where M and N are

connected by a single non-evaluation step. Using the single-step result and the

fact that evaluation is a function, and therefore an evaluation step preserves

the meaning of a term, it is easy to prove the multi-step result via an induction

on the length of the sequence M ↔ N .

Let M1 = Eval(M). We show that Outcome(N) = Cl(M1) = Outcome(M) in

both cases relating M and N by a non-evaluation step (see figure 3.6):

(a) M ◦−−→ N . By the project property, M ==⇒∗ M1 implies that there exist

M2, N1 such that M1 ==⇒
∗ M2, N ==⇒∗ N1, and M2 ◦−−→

∗ N1. But M1 is an

evaluation normal form, so M1 = M2. By the class preservation property,

Cl(M1) = Cl(N1), and property 3.1.2 implies that N1 is an evaluation nor-

mal form. Hence, N1 = Eval(N), and Outcome(N) = Cl(N1) = Cl(M1) =

Outcome(M).

(b) N ◦−−→ M . By the lift property, M ==⇒∗ M1 implies that there exists N1

such that N ==⇒∗ N1 and N1 ◦−−→
∗ M1. Class preservation implies Cl(N1) =

Cl(M1), and since M1 is an evaluation normal form, property 3.1.2 implies

that N1 is an evaluation normal form, and, as above, Outcome(N) =

Outcome(M).

2. Outcome(M) = ⊥: If Outcome(N) 6= ⊥, then by the above argument we

can show that Outcome(M) = Outcome(N) 6= ⊥, and we get a contradiction.

Therefore, if Outcome(M) = ⊥, then Outcome(N) = ⊥.
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3.4.3 Lift is Equivalent to Standardization

It is easy to see that the lift property (3.4.1) is implied by standardization (see def-

inition 3.3.4). As shown below, the converse is also true, so lift is in fact equivalent

to standardization.

When then do we define a new property (lift) rather than using an existing

one (standardization)? via lift and project. As we shall see later, proofs of lift and

project use the same technique (reductions of marked terms and, based on such re-

ductions, γ-developments); these proofs also share an important intermediate result:

weak standardization of γ-developments. Since proving project is required in our

framework, it is more convenient for us to formulate and prove lift property rather

than the equivalent standardization property, so that we can use some of the results

already established for proving project.

Lemma 3.4.6 (Lift Implies Standardization). If a calculus has the lift property

(i.e., for any reduction sequence M ◦−−→ N ==⇒∗ N1 there exists a sequence M ==⇒∗

M1 ◦−−→
∗ N1) then it has the standardization property (i.e., for any sequence M1 −−→

∗

M2 there exists M3 such that M1 ==⇒
∗ M3 ◦−−→

∗ M2).

Proof. A non-standard sequence S from M1 to M2 must have the form:

M1 −−→
∗ L1 ◦−−→ L2 ==⇒+ L3 ◦−−→

∗ M2.

By the lift property there exists L̃2 such that L1 ==⇒∗ L̃2 ◦−−→
∗ L3. Define Φ(S) as the

sequence2:

M1 −−→
∗ L1 ==⇒∗ L̃2 ◦−−→

∗ L3 ◦−−→
∗ M2.

2In general, there may be many sequences that satisfy the lift property, so Φ(S) may not be
uniquely defined. However, we can always introduce an ordering on terms and a related ordering
on reduction sequences such that Φ(S) can be uniquely defined as the sequence obtained by using
the least or greatest sequence in this ordering satisfying the lift property.
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Note that each application of Φ on a reduction sequence from M1 to M2 yields a

new reduction sequence from M1 to M2 that has fewer non-evaluation steps to the

left of the rightmost evaluation step in the sequence. Thus, iterating Φ starting with

an arbitrary reduction sequence from M1 to M2 will eventually terminate with a

reduction sequence from M1 to M2 in which there are no non-evaluation steps to the

left of any evaluation step – i.e., when a standard sequence from M1 to M2 has been

obtained.

3.4.4 Weakening Project: Confluence w.r.t. Evaluation

Recall that our framework requires lift, project, and class preservation in order to

prove computational soundness. It turns out that we can replace the project property

by a slightly weaker property that we call confluence w.r.t. evaluation and still be

able to prove computational soundness. Confluence w.r.t. evaluation is defined as

follows and depicted in figure 3.7:

M M1

N N1

∗

∗ ∗

∗

Figure 3.7: Confluence w.r.t. evaluation.

Definition 3.4.7 (Confluence w.r.t. evaluation). A calculus reduction relation

−−→ is confluent w.r.t. an evaluation relation ==⇒ iff M ==⇒∗ M1 and M −−→∗ N implies

the existence of a N1 such that N ==⇒∗ N1 and M1 −−→
∗ N1.

We can prove computational soundness if we replace project by confluence

with respect to evaluation in the preconditions:
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Theorem 3.4.8 (Computational Soundness via Confluence w.r.t. Evalua-

tion). If −−→ is confluent w.r.t. evaluation, and the calculus enjoys the lift and class

preservation properties, then the calculus is computationally sound.

Proof. The proof is similar to that for theorem 3.4.5. Case 2 and Case 1(b) are

exactly the same. Case 1(a) follows from the fact that −−→ is confluent w.r.t. ==⇒.

Project implies confluence w.r.t. evaluation, as shown in lemma 3.4.9. We

conjecture that confluence w.r.t. evaluation is more general than project, i.e. there

exist systems which have the former, but not the latter. However, we have not yet

shown the existence of such a system. By lemma 3.4.9 below such systems do not

have standardization, and therefore cannot be shown to be computationally sound

via our new technique. We leave constructing such a system for a future work.

Lemma 3.4.9 (Project Implies Confluence w.r.t. Evaluation). If a calculus

has the project property, then −−→ is confluent w.r.t. ==⇒.

Proof. Suppose that M ==⇒∗ M1 and M −−→∗ N . We wish to show that there is a

N1 such that N ==⇒∗ N1 and M1 −−→
∗ N1. We proceed by induction on the length n

of the sequence M −−→∗ N . If n = 0, then N = M and N1 = M1. If n > 0, then

M −−→ L −−→∗ N .

If M ==⇒ L, then L ==⇒∗ M1, since ==⇒ is a function. Otherwise M ◦−−→ L, and

the project property implies the existence of L1 such that L ==⇒∗ L1 and M1 −−→
∗ L1.

Applying the inductive hypothesis completes the proof.

In a calculus that has standardization (or, equivalently, lift), the converse of

lemma 3.4.9 also holds, i.e. confluence w.r.t. evaluation implies project:

Lemma 3.4.10. If a calculus has confluence of ==⇒ w.r.t. evaluation and the stan-

dardization property (definition 3.3.4), then it has the project property.
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M M1 M M1

3.4.7
3.3.4
−→ M2

N N1 N N1

∗ ∗

∗ ∗

∗

∗
∗

Figure 3.8: Proof of lemma 3.4.10.

Proof. The proof is shown on figure 3.8. Suppose M ◦−−→ N and M ==⇒∗ M1. Then by

confluence w.r.t. evaluation there exists N1 such that N ==⇒∗ N1 and M −−→∗ N1. By

standardization the latter sequence implies that there exists M2 such that M1 ==⇒∗

M2 ◦−−→
∗ N1, which proves the project property.

The above lemma is formulated for standardization, rather than for lift, be-

cause it is more convenient to use standardization in the proof.

Our framework proves computational soundness via lift and project. If a

calculus does not have lift (and hence standardization), then our approach is not

applicable. If lift holds, then, as we have shown, project is equivalent to confluence

w.r.t. evaluation. Therefore, even though confluence w.r.t. evaluation is a more

general property, there is no point of using it instead of project in our proofs, because

in this framework the two properties are equivalent. For the rest of the presentation

we will be using lift and project. While it is an interesting fact that project could be

replaced by a slightly weaker property without affecting the computational soundness

results, the two properties are equivalent in our framework because of the presence

of standardization.
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3.5 Extension: Handling Evaluation Relations

3.5.1 Abstracting Over Order and Names of Components

In typical calculi, evaluation is a function. I.e., for every term there is at most one

term to which it evaluates. This is a natural way of defining evaluation for such

calculi as λ-calculus, where there is an obvious ordering of redexes in a term, such as

outside-in and left-to-right. However, if one considers a calculus of recursively scoped

records, there is no clear order of evaluation of components. For instance, consider

the following record:

[B 7→ 5 + 6, A 7→ λx.x @ 3].

If evaluation is a function, then there is just one result of an evaluation step of this

record. Is it [B 7→ 5 + 6, A 7→ 3] or [B 7→ 11, A 7→ λx.x @ 3]?

Of course, we could decide that we evaluate components in a record left-to-

right (in which case we evaluate the component bound to B), but then we would not

be able to identify such records up to reordering of components. If records represent

modules (as it the case in our linking calculus), then we would like an operation of

linking two modules together (i.e. combining their components) to be commutative.

So a left-to-right order is not a good order of evaluation.

A better way of resolving this issue is to suppose that labels in modules are

elements of some totally ordered set. For instance, we can assume that all labels

are composed of letters and are ordered lexicographically (and in the example the

component bound to A is evaluated, since A goes before B in alphabetical order). In

this case the order of evaluation does not depend on the order of components, and

we are able to define commutative linking of two modules.

However, this approach presents additional difficulties in defining operations
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on modules at the linking level. One issue that we have to deal with is representing

exported (visible) and private (hidden) components of modules. While exported

components of modules have unique fixed names, private components represent the

implementation part of a module not visible to the user of the module. The names

of private components don’t have to be unique or fixed, in fact they may be changed,

added, or removed if the implementation of the module changes, and they may be

generated automatically, in particular to resolve naming conflicts when linking two

modules. We would like to identify modules up to consistent renaming of their private

components (i.e. renaming a label binding the component and all references to this

label throughout the module to the same new name), similarly to identifying modules

up to the order of components.

There is still a way of defining at least a partial order on private components

based on the exposed labels of the module. For instance, consider a module:

[A 7→ 2 + h2, B 7→ λx.x @ h1, h1 7→ 1 + 3, h2 7→ 4 ∗ 5]

Here A,B are exposed labels, and h1, h2 are private. Which of the two private

components should be evaluated first? We cannot decide by their names for the

reasons explained in the previous paragraph. However, since a visible label A uses

h2, and B uses h1, we can use the ordering of the exposed labels to impose an order

on the private labels. In this case h2 has a priority over h1. The same approach

allows us to order “hidden” labels even if they are referenced in the same exposed

component. For instance, in the module

[A 7→ h1 + h2, h1 7→ 1 + 3, h2 7→ 4 ∗ 5]
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h1 has a priority over h2, since it appears first in the component bound to A (com-

ponents are terms, and therefore all their subterms are ordered by the outside-in,

left-to-right ordering).

But even this approach defines only a partial order on components. Consider

a module:

[A 7→ 2, h1 7→ 3 + 4, h2 7→ λx.x @ 5].

Since the private components are not referenced in the exported part of the module,

this approach does not allow us to specify the order in which they will be evaluated.

Of course, one may argue that there is no need to order them, since they do not

contribute to the exposed part of the module. But what if one of these components

diverges, and the other gives an error? One has to be very careful in handling these

issues, as well as other potential problems related to such operations as renaming of

labels and hiding of components.

While we are not claiming that the suggested (or a similar) approach cannot

handle these issues, we have just pointed out that a lot of care has to be taken if one

wants to define an evaluation function for recursively scoped records and for modules

with hidden components. At the same time, many of these problems can be avoided

if we relax the restriction that evaluation has to be a function, i.e. allow more than

one term to be a result of a one-step evaluation of a given term. This is similar to

a calculus rewrite relation −−→, which also may rewrite the same term to different

terms, depending on which redex gets reduced. If we adopt this approach, then for

the module

[B 7→ 5 + 6, A 7→ λx.x @ 3]

in the example above both [B 7→ 5 + 6, A 7→ 3] and [B 7→ 11, A 7→ λx.x @ 3] are

results of an evaluation step.
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We adopt this approach for the calculus of recursively scoped records and for

the linking calculus based on it. Evaluation is a function in the underlying call-by-

value calculus which describes components of records.

3.5.2 Properties of an Evaluation Relation

Recall that the meaning of a term in our framework is given by small-step operational

semantics defined via the evaluation relation. Therefore even if evaluation is not a

function, it still has to be sufficiently “well-behaved” to define a unique meaning

for each term in the calculus. It turns out that it is sufficient to require that the

evaluation relation is confluent.

Lemma 3.5.1. If ==⇒ is confluent, then for every M there is a unique Outcome(M)

which satisfies definition 3.1.7.

Proof. Definition 3.1.7 defines outcome of a term M as Cl(Eval(M)) if it exists, and

the symbol ⊥ otherwise.

• Suppose M has an evaluation normal form, i.e. there exists a term N such

that M ==⇒∗ N , and there is no N1 such that N ==⇒ N1. If M has another

evaluation normal form N1, then by confluence of ==⇒ there must a term L

such that N ==⇒∗ L and N1 ==⇒∗ L. But since both N and N1 are evaluation

normal forms, it must be the case that N = L = N1. Therefore M has a unique

evaluation normal form, and Outcome(M) = Cl(Eval(M)) is unique.

• Suppose M does not have an evaluation normal form, i.e. all evaluation se-

quences originating at M are infinite. Then by definition Outcome(M) =⊥,

and again the outcome of M is unique.
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M1 M2 M3 M4 ...

N = Eval(M1)

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

Figure 3.9: Divergence does not contradict existence of a normal form.

Note that the first case of the above proof states that M has an evaluation

normal form. It does not require that all evaluation sequences originating from M

converge. In fact, confluence of evaluation does not guarantee that if a term has

an evaluation normal form, then all evaluation sequences originating from the term

converge. See figure 3.9 for a case when a term has an infinite diverging sequence

and a normal form, also see example below of a confluent relation that allows a term

to have both a normal form and an infinite diverging sequence.

Example 3.5.2 (Evaluation Normal Form and Divergence). The calculus

relation −−→ of the call-by-name λ-calculus is a relation that allows a term to have

both a normal form and a diverging sequence. For instance, consider a term M =

(λx.1) @ Ω, where Ω = (λy.y) @ (λy.y). M evaluates to its calculus normal form 1

in one step, but also has an infinite reduction path evaluating Ω.

Note that even if evaluation behaves as described above, every term still has

a unique outcome as defined in definition 3.1.7. However, in this case outcome does

not completely characterize observable behavior of a term w.r.t. evaluation, because

the behavior of the term allows two possibilities: evaluation to the normal form and

divergence, but the outcome only takes into account the normal form.

Fortunately, in all the applications considered in this presentation evaluation

relations are such that if a term diverges w.r.t. ==⇒ on one path, then it diverges

on all paths, so the technical issue discussed in this remark does not arise there.

Therefore, in the rest of the presentation we make the following assumption:
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Assumption 3.5.3. We assume confluence of ==⇒ in all cases when ==⇒ is not a

function. In addition, we assume that ==⇒ is such that if a term M has a normal form

w.r.t. ==⇒, then there is no infinite sequence of ==⇒ steps originating from M .

3.5.3 Computational Soundness when Evaluation is not a

Function

In this section we extend the results of sections 3.3–3.4 for the case when evaluation

is not a function. The first thing we observe is that assumption 3.5.3 guarantees that

both an evaluation normal form of a term (if it exists) and an outcome of a term are

uniquely defined. Hence all the definitions which use these notions are valid.

We show that the result of theorem 3.4.5 hold in the case when evaluation is

not a function.

M
M1 =

Eval(M)

conf. of ==⇒

N N1

∗

∗

M
M1 =

Eval(M)

trans.

N

∗

∗

(a) (b)

Figure 3.10: Additional cases when evaluation is not a function.

Theorem 3.5.4. Consider a calculus whose evaluation relation ==⇒ is not a function,

but is confluent and satisfies assumption 3.5.3. If the calculus has the lift, project,

and class preservation properties, then it is computationally sound.

Proof. Assume that M ↔ N . As in the proof of theorem 3.4.5, We show that

Outcome(M) = Outcome(N) by the following two cases:
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1. Outcome(M) 6= ⊥: We show the result for the case where M and N are

connected by a single non-evaluation step. The rest of the proof follows by

induction on the number of steps in M ↔ N .

Let M1 = Eval(M). We have the following four cases: M ◦−−→ N , N ◦−−→ M ,

M ==⇒ N , and N ==⇒ M . The first two cases are exactly the same as in the

proof of theorem 3.4.5. We show the result in the other two cases, they are

illustrated in figure 3.10.

(a) M ==⇒ N . Since M ==⇒∗ M1, by confluence of ==⇒ there exists N1 such

that N ==⇒∗ N1 and M1 ==⇒∗ N1. But M1 is an evaluation normal form, so

M1 = N1, N1 is an evaluation normal form, and N1 = Eval(N).

(b) N ==⇒ M . Since N ==⇒ M ==⇒∗ M1, we have N ==⇒∗ M1, and therefore

M1 = Eval(N) by the uniqueness of an evaluation normal form.

2. The case when Outcome(M) = ⊥ is the same as in the proof of theorem 3.4.5.



Chapter 4

Techniques for Proving Lift and

Project

4.1 Challenges in Proving Lift and Project

We have shown (see section 3.4.3, in particular lemma 3.4.6) that one of the properties

that we need to prove, namely the lift property, is equivalent to standardization,

and the other property, project, is a restricted version of confluence. One might

expect that we would be able to adapt the methods commonly used for proving

confluence and standardization for proofs of lift and project. There has been a

variety of techniques proposed for proving confluence and standardization (together

or separately), such as [Plo75, HL91, Tak95, GLM92, WM00]. See chapter 7 for a

more detailed discussion.

However, while the methods proposed in these publications are quite general

and cover a variety of different systems, each of these methods makes assumptions

which do not hold in our main application.

• Huet and Levy in [HL91] give a framework for a first-order term rewriting

46
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systems and they also require the system to be left-linear. A rewrite system is

left-linear if each meta-variable appears once in the left-hand side of a rewrite

rule.

• Plotkin’s proof in [Plo75] is based on finiteness (or, more exactly, boundedness)

and confluence of developments.

• Takahashi in [Tak95] defines parallel reductions based by induction on the

term structure. However, this approach is implicitly based on finiteness and

confluence of developments, since parallel reduction effectively performs a de-

velopment of certain redexes, and finiteness and confluence of developments

seem to be required for these reductions to be well-defined.

• Both [GLM92] and [WM00] give very general proofs of standardization, but in

both cases the system is assumed to be left-linear.

Our new technique has been developed with the goal of of being able to

handle the calculus of records (see section 2.2.3). As simple as it is, the calculus

of records lacks many properties that one is accustomed to seeing in calculi. In

addition to being non-confluent, it also has non-left-linear rules, and its developments,

if defined straightforwardly, are not finite, non-confluent, and lack standardization

(see section 4.4 for details).

As we have mentioned earlier, rather than restricting our calculus to satisfy

these properties, we have undertaken a challenging task of proving computational

soundness for the calculus as is, without excluding any of its capabilities. The proofs

turned out to be somewhat long and tedious, but we hope that they pave a way for

computational soundness proofs for other non-confluent calculi and similar systems.

In this chapter, we first give an overview of traditional techniques. We use
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the call-by-value and the call-by-name λ-calculi as examples of calculi for which

these traditional techniques are applicable and state the properties of developments

required in these traditional cases. We demonstrate by examples that the calculus of

recursively scoped records does not have several of these properties. We introduce the

notion of γ-development (a generalization of a traditional notion of developments),

and give a general proof of lift and project. Chapter 5 gives the details of the proof

for the term calculus and the calculus of recursively scoped records, which follow the

lines of the general proof given in this chapter.

4.2 Marked Calculi

We prove lift and project via marking a redex and tracing its residuals after a re-

duction. In order to formalize this approach, we need to consider a marked version

of the calculus: a calculus in which some redexes in a term may be marked. We

also need to define what a redex is and what are residuals of a redex with respect

to a reduction step. These definitions are calculus-specific. We parameterize the

definition of a redex over the calculus rules, and give an axiomatic definition of a

residuals, i.e. we state the properties that residuals must have.

In section 4.3.1, we sketch proofs of confluence and standardization via marked

reductions. We will take these proofs as an example of the technique of marked

reductions. In section 4.4 we show why the approach taken in these proofs cannot be

applied directly to the record calculus, and define a notion of γ-developments that

allows us to prove lift and project via marked reductions.
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4.2.1 Redexes and Residuals

The notion of a redex is commonly used and intuitively clear, but a formal definition

of a redex presents some challenges. Consider the term (λx.2 + 3) @ (λy.2 + 3)

in the λ-calculus. If we say that 2 + 3 is a redex in this term, then we get the

following ambiguity: both (λx.5) @ (λy.2 + 3) and (λx.2 + 3) @ (λy.5) are obtained

by reducing a redex 2 + 3 in the original term. In this presentation we resolve the

ambiguity by specifying subterm occurrences of redexes in the term.

One may argue that specifying a pair of terms M and L such that M −−→ L

uniquely defines the redex reduced in the reduction, so there is no need to anno-

tate the reduction with the subterm occurrence of the redex. For instance, knowing

the resulting term in a reduction of the term (λx.2 + 3) @ (λy.2 + 3) in the exam-

ple above allows us to determine which of the two occurrences of 2 + 3 has been

reduced. However, consider the following term from the call-by-name λ-calculus:

(λx.x) @ ((λy.y) @ (λz.z)). Reducing the first application gives (λy.y) @ (λz.z),

and reducing the second one results in (λx.x) @ (λz.z), but the latter two terms

are the same up to α-renaming! Moreover, if we had chosen to use abbreviation I

for λx.x, the original term would have been written as I @ (I @ I), and the results

of both reductions as I @ I (see example 3.1.19 in [Bar84] due to Levy). We avoid

dealing with these ambiguities by annotating reductions with a subterm occurrence

of the redex to identify the reductions uniquely. Subterm occurrences are defined via

one-hole contexts enclosing a subterm in a term:

Definition 4.2.1 (One-hole context). A one-hole context (also called a context)

is the result of replacing one subtree of a syntactic tree of a term in a calculus by the

symbol 2, called the context hole. We use A,B,C to range over contexts in a calculus.

We use E to range over evaluation contexts of a calculus. The notation C{N} stands
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for the result of filling the context hole of C with a term N . See section 2.2 for

examples of contexts and evaluation contexts.

As an example, consider one-hole contexts in λ-calculus: a context 2 @ 2 can

be obtained by replacing the subtree λx.x by 2 in the term (λx.x) @ 2. Note that

(λx.x) @ 2 = (2 @ 2){λx.x} in the above notations, i.e. the term is the result of

filling the context 2 @ 2 with the term λx.x.

Definition 4.2.2 (Subterm occurrence). A subterm occurrence is a pair (C, N)

of a one-hole context and a term. We say that two subterm occurrences are equal,

and write (C1, N1) = (C2, N2) if and only if C1 = C2 and N1 = N2.

Subterm occurrences are used to identify a particular subtree of a syntactic

tree of a term. For instance, a subterm occurrence ((λx.2) @ 2, 2) identifies the first

occurrence of the constant 2 in the term (λx.2) @ 2.

An alternative approach to identifying a particular subterm occurrence in a

term is by giving the path to it from the root of the syntactic tree. Such a path

is unique. This approach is used in [HL91]. The two approaches are equivalent.

We find our approach to be easier to extend to multi-hole contexts which we use in

computational soundness proofs for particular calculi.

Definition 4.2.2 makes it possible to distinguish the two redexes in the term

(λx.2 + 3) @ (λy.2 + 3): the subterm occurrence of the first redex is written as

((λx.2) @ (λy.2 + 3), 2 + 3), and the subterm occurrence of the second one is

((λx.2 + 3) @ (λy.2), 2 + 3).

Using these notations, we formalize the notion of a redex. We assume that

no two reduction rules have the same redex.

Definition 4.2.3 (Redex). Suppose the calculus reduction is defined by rules of

the form C{R} −−→ C{Q}, possibly with some restrictions on C and R. A subterm
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occurrence (A, N) is called a redex if there is a reduction rule such that A = C,

N = R, and A and N satisfy all the restrictions of the rule.

If (C, R) is a redex, then there exist term Q and L = C{Q} such that M =

C{R} −−→ C{Q} = L. In this case we write M −(C,R)−−−→ L.

If the rule is an evaluation rule, then (C, R) is an evaluation redex, and we write

M =
(C,R)
==⇒ L, otherwise (C, R) is a non-evaluation redex, and we write M ◦−(C,R)−−−→ L.

We use E to denote the context of an evaluation redex, which we call an evaluation

context.

The following definition extends these notations to sequences of redexes:

Definition 4.2.4. Suppose we have a sequence of reduction stepsM −(C1,R1)−−−−→M1...Mn−1

−(Cn,Rn)−−−−→ N . Then we denote it by M −S−→
∗
N , where S = (C1, R1); ...; (Cn, Rn) is a

sequence of redexes. The notations =
S
=⇒

∗

and ◦−S−→
∗
are defined analogously.

The definition and the assumption below abstract over details of particular

calculi and specify general requirements that residuals have to satisfy. Each calculus

provides calculus-specific details of the definition.

Definition 4.2.5 (Axiomatic definition of a residual). Let (C1, R1) and (C2, R2)

be two redexes such that C1{R1} = C2{R2} = M , and let M −(C1,R1)−−−−→ N . A set of

residuals of (C2, R2) w.r.t. (C1, R1) denoted by (C2, R2)/(C1, R1) is a set of redexes

in N uniquely defined by the calculus. If (C3, R3) ∈ (C2, R2)/(C1, R1), then (C3, R3)

is a residual of (C2, R2) w.r.t. (C1, R1). If a set (C2, R2)/(C1, R1) consists of a single

element (C3, R3), then sometimes we write (C3, R3) = (C2, R2)/(C1, R1), omitting

the set notation.

Assumption 4.2.6 (Unique ancestor). Let (C1, R1), (C2, R2), and (C3, R3) be 3

redexes in M s.t. (C2, R2) 6= (C3, R3), and suppose M −(C1,R1)−−−−→ N . Then it must be

the case that (C2, R2)/(C1, R1) ∩ (C3, R3)/(C1, R1) = ∅.
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The assumption states that a residual originates from only one redex in the

term being reduced. Note that in the assumption we do not require that (C2, R2) and

(C3, R3) are different from (C1, R1). This is because in some calculi (in particular,

in the calculus of records) (C1, R1)/(C1, R1), i.e. a set of residuals of a redex w.r.t.

itself, may be non-empty.

Definition 4.2.7. We extend definition 4.2.5 to sequences of reductions and to sets

of redexes as follows:

1. Let F = {(Ci, Ri) | 0 ≤ i ≤ n} be a set of redexes in a term M , and let

M −(C,R)−−−→ N . Then the set of residuals of F w.r.t. (C, R) is denoted and

defined as:

F/(C, R) =

i≤n
⋃

i=0

(Ci, Ri)/(C, R).

2. Let S be a reduction sequence M −S−→
∗
N and F = {(Ci, Ri) | 0 ≤ i ≤ n} be

a finite set of redexes in M . The set of residuals of F w.r.t. a sequence S is

denoted and inductively defined as follows:

• If S = ε, then F/S = F ;

• If S = (C1, R1);S1, then (C, R)/S = ((C, R)/(C1, R1))/S1;

• F/S =
i≤n
⋃

i=0

(Ci, Ri)/S.

We use the notation (C, R)/S to denote {(C, R)}/S.

4.2.2 Reductions with Marked Redexes

A common technique for reasoning about the interaction of two reduction steps origi-

nating from the same term is to mark one of the redexes and trace its residuals in the
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term obtained by reducing the other redex. We use marked reductions for proving

lift and project. See section 4.8 for details.

The technique for proving confluence and standardization via marking of re-

dexes is described in detail in [Bar84]. The essence of the technique is that instead of

the original calculus, we consider a calculus with terms in which some redexes may

be marked. Then we show the desired properties for the calculus of marked terms

and translate them back to the original calculus by erasing the marks.

In this presentation we assume that if M,N,L range over terms of a calculus,

then M ′, N ′, L′ range over terms of the marked version of the calculus, i.e. some

redexes in these terms are marked. We show marked redexes by underlining. We

assume that there is only one kind of a mark for redexes, i.e. every two marked terms

are marked the same way. We define marked(M ′) to be the set of all marked redexes

in M ′.

Example 4.2.8 (Set of marked redexes in a term). Consider the following

term in the call-by-value λ-calculus:

M ′ = (λx.((λv.v) @ 1)) @ (y @ ((λz.z) @ (λw.w))),

marked(M ′) = {((λx.2) @ (y @ ((λz.z) @ (λw.w))), (λv.v) @ 1),

((λx.((λv.v) @ 1)) @ (y @ 2), (λz.z) @ (λw.w))}.

Here (λx.2) @ (y @ ((λz.z) @ (λw.w))) is the context enclosing the first marked

redex (λv.v) @ 1, and (λx.((λv.v) @ 1)) @ (y @ 2) is the context enclosing the

second marked redex ((λz.z) @ (λw.w)).

Note that only redexes, but not arbitrary applications or expressions, can

be marked. For instance, the term (λx.x) @ ((λy.y) @ (λw.w)) is a valid term in

a marked extension of the call-by-name λ-calculus, but not of the call-by-value λ-
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calculus. This is because in the call-by-name calculus β-redexes are of the form

(λx.M) @ N , so (λx.M) @ N is a β-redex, but in the call-by-value calculus β-

redexes are of the form (λx.M) @ V , i.e. the operand is a value, so the above term

is not a β-redex.

We introduce the following “erasure” function: |M ′| = M for a marked term

M ′ and an unmarked termM ifM is obtained fromM ′ by removing all the markings

of all redexes. For instance,

|(λy.((λx.x) @ 2)) @ (λz.3 + 4)| = (λy.((λx.x) @ 2)) @ (λz.3 + 4).

Given a definition of a reduction and an evaluation step in the original (i.e.

unmarked) calculus, we define these notions in the marked version of the calculus as

follows:

Definition 4.2.9 (Reductions on marked terms). M ′ −(C,R)−−−→ N ′ if and only if

|M ′| −(C,R)−−−→ |N ′| and marked(N ′) = marked(M ′)/(C, R). We write M ′ =
(C,R)
==⇒ N ′ if

and only if M ′ −(C,R)−−−→ N ′ and |M ′| =
(C,R)
==⇒ |N ′|. Similarly, M ′ ◦−(C,R)−−−→ N ′ if and only if

M ′ −(C,R)−−−→ N ′ and |M ′| ◦−(C,R)−−−→ |N ′|.

Note that a calculus of terms with marked redexes has somewhat different

reduction rules from its unmarked version. For instance, the β-reduction rule for the

marked extension of the call-by-value λ-calculus splits into two cases, one when the

redex is marked, and the other one when it is not:

(λx.M ′) @ N ′ −−→ M ′[x := N ′]

(λx.M ′) @ N ′ −−→ M ′[x := N ′].

One has to be careful about how properties of the calculus of marked terms
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are translated into those of the corresponding unmarked calculus. The translation

from the marked calculus to the unmarked one is quite straightforward: M ′ −−→ N ′

in the marked calculus implies |M ′| −−→ |N ′|.

Clearly, the inverse property does not hold: ((λy.y) @ 3) @ 5 −−→ (λy.y) @ 3 in

the unmarked calculus, but ((λy.y) @ 3) @ 5 6−−→ (λy.y) @ 3 in the marked calculus.

This is because the redex (λy.y) @ 3 is not marked in the first term of the reduction

and is marked in the second, so the reduction does not satisfy definition 4.2.9.

We use the following property of reductions of marked terms:

Lemma 4.2.10. If marked(M ′) = ∅ and M ′ −−→∗ N ′, then marked(N ′) = ∅.

Proof. This follows directly from definition 4.2.7.

4.2.3 Developments

In this section, we define the notions of development and complete development

and state useful properties of developments. Section 4.3 shows how these properties

may be used in proving confluence and standardization of a calculus. Note that the

development reduction is defined in a marked calculus, since it reduces only marked

redexes.

Definition 4.2.11 (Development reduction). Let M ′, N ′ be two terms in a

marked calculus. We say that M ′ reduces to N ′ by a development reduction (de-

noted M ′ (C,R)
→
dev

N ′) if M ′ −(C,R)−−−→ N ′ and (C, R) ∈ marked(M ′).

Definition 4.2.12 (Complete development). We say that a sequence M ′ →∗

dev
N ′

is a complete development, denoted by −−→∗

cd
, if marked(N ′) = ∅.

In a “good-case scenario”, developments are bounded, i.e. for every term that

has some marked redexes there exists a limit on the length of development sequences

originating from the term.
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Definition 4.2.13 (Maximal length of γ-development). Let MAX[M ′] denote

the number of steps in the longest reduction M ′ →∗

dev
N ′ if such a reduction exists.

MAX[M ′] = ⊥ otherwise.

Property 4.2.14 (Boundedness of developments). A calculus has the bounded

developments property if for all M ′ there exists an integer number n such that

MAX[M ′] = n.

The boundedness of developments implies finiteness of developments:

Property 4.2.15 (Finiteness of developments). A calculus has finiteness of

developments if there is no infinite sequence M ′
1 →
dev

M ′
2 →
dev

....

Note that finiteness of developments does not imply boundedness of develop-

ments: it is theoretically possible to have a term M ′ such that there is no infinite

development reduction originating at M ′, but there are finite developments of arbi-

trary length. The property commonly known as “finiteness of developments” often,

as in the case of [Bar84] or [AF97], is proven by constructing an integer-valued (or a

multiset-valued, as in [AF97]) function on marked terms, called measure, and show-

ing that every development reduction step reduces the measure. The measure of a

term serves as a limit on the length of the reduction. Proofs based on “finiteness”

of developments usually refer to the measure of a term as the limit of the length

of the development reduction (see Corollary 11.2.22 in [Bar84]). While finiteness of

developments may be sufficient for proofs of confluence of the calculus, boundedness

is required for traditional proofs of standardization. See the proof of lemma 4.3.3 for

details.

In addition to boundedness, we would like developments to have the following

two properties:
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Property 4.2.16 (Weak confluence of developments). A calculus has a weak

confluence of developments if →
dev

is weakly confluent, i.e. if M ′
1 →

dev
M ′

2, M
′
1 →

dev
M ′

3,

then there exists M ′
4 such that M

′
2 →

∗

dev
M ′

4 and M
′
3 →

∗

dev
M ′

4.

Property 4.2.17 (Standardization of developments). A calculus has a stan-

dardization of developments if M ′ →∗

dev
N ′ implies that there exists L′ such that

M ′ ==⇒∗

dev
L′ ◦−−→∗

dev
N ′.

Another useful property of developments gives the ability to replace a so-

called non-standard pair of development steps (i.e. a non-evaluation step followed by

an evaluation step) by a development sequence which begins with a standard step.

Property 4.2.18 (Replacing a non-standard development pair). Given a

sequence M ′
1 ◦−−→

dev
M ′

2 ==⇒
dev

M ′
3, there exists M

′ s.t. M ′
1 ==⇒

dev
M ′ →∗

dev
M ′

3.

The next section details how these properties of developments are used in

proving properties of the calculi. Section 4.4 discusses which of these properties

do not hold in the calculus of records and motivates the need for definition of γ-

developments.

4.3 The “Good Case” Scenario: λ-calculi

In this section we show how properties of developments introduced in the previous

section allow us to prove confluence and standardization. The call-by-value and the

call-by-name λ-calculi have all of the “good” properties of developments. Confluence

and standardization of these calculi can be proven by the approach given in this

section.
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4.3.1 Parallel Moves Lemma and Confluence

Weak confluence of developments, combined with finiteness, implies that all complete

developments of a term end at the same term. This property is known as confluence

of developments.

A core property of calculi in the traditional approach is referred to as Parallel

Moves Lemma (see [HL91]). Its proof, or, more precisely, the proof of its marked

version (property 4.3.2), uses confluence of developments.

Property 4.3.1 (Parallel Moves Lemma). A calculus satisfies parallel moves

lemma if the following holds: if M1 −
(C1,R1)−−−−→M2 and M1 −

(C2,R2)−−−−→M3, then there exists

M4 such that M2 −
(C2,R2)/(C1,R1)−−−−−−−−−→

∗
M4 and M3 −

(C1,R1)/(C2,R2)−−−−−−−−−→
∗
M4.

Note that in the parallel moves lemma, the two reduction sequences terminat-

ing atM4 (i.e.,M2 −
(C2,R2)/(C1 ,R1)−−−−−−−−−→

∗
M4 andM3 −

(C1,R1)/(C2 ,R2)−−−−−−−−−→
∗
M4) reduce residuals of

the two given redexes (C1, R1) and (C2, R2). In order to trace residuals of a redex, one

has to mark the redex. Then the following property of the marked calculus implies

the parallel moves lemma in the unmarked calculus. It is illustrated in figure 4.1.

(λx.x @ x) @ (λy.2 + 3) (λy.2 + 3) @ (λy.2 + 3)

(λx.x @ x) @ (λy.5) (λy.5) @ (λy.5)

cd cd

∗

Figure 4.1: Example of the parallel moves property

Property 4.3.2 (Parallel Moves Lemma in a Marked Calculus). A marked

calculus satisfies parallel moves lemma if the following holds: for any M ′
1,M

′
2, and

M ′
3 such that M ′

1 −
(C1,R1)−−−−→ M ′

2 and M ′
1 −

(C2,R2)−−−−→ M ′
3 there exists M ′

4 such that M ′
2

−(C2,R2)/(C1 ,R1)−−−−−−−−−→
∗

M ′
4 and M

′
3 −

(C1,R1)/(C2,R2)−−−−−−−−−→
∗

M ′
4.
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Note that this property is stronger than property 4.3.1 since it requires that

the appropriate marked reductions exist. Both the call-by-value and the call-by-name

λ-calculi satisfy the marked parallel moves lemma.

If we additionally assume that (C, R)/(C, R) = ∅ for any redex (C, R), and

if we mark one of the two redexes in M ′
1, i.e. marked(M ′

1) = {(C1, R1)}, then

marked(M ′
2) = ∅, which implies that marked(M ′

4) = ∅. Then M ′
3 −

(C1,R1)/(C2,R2)−−−−−−−−−→
∗
M ′

4

must be a complete development.

The property that (C, R)/(C, R) = ∅ for any (C, R) holds in the call-by-

value and the call-by-name λ-calculi (as well as in other calculi that satisfy parallel

moves lemma, such as the call-by-need calculus introduced in [AF97]), but not in the

calculus of records. See section 4.4 for details.

It is a well-known result that the parallel moves lemma and the finiteness of

developments (properties 4.3.2 and 4.2.15) together imply confluence of a calculus

(see [Bar84] for details). Confluence of developments is also an important property

which justifies parallel reductions ([Tak95]) in the λ-calculus. A parallel reduction

reduces simultaneously a set of redexes in a term (i.e. performs a complete devel-

opment of the set of redexes). To be able to use parallel reductions for proving

confluence of the calculus, the result of simultaneous reduction of the set of redexes

must not depend on the order in which the redexes are reduced.

In the section 4.4 we show that the parallel moves lemma does not hold in

the calculus of records. However, we are able to achieve a restricted version of this

property by introducing the notion of γ-developments.
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4.3.2 Standardization of Developments

Standardization of developments is one of the key elements in proving the lift prop-

erty. Since lift is equivalent to standardization (see section 3.4.3), standardization of

developments can be used for proving standardization of the calculus.

It may seem that proving standardization of developments should be just as

difficult as proving standardization of the calculus. The rest of the section shows

how the boundedness of developments makes it much easier to prove standardiza-

tion of developments than to prove standardization of the calculus. This way of

proving standardization of developments works in the case when the calculus has

the property 4.2.18. The property holds for both the call-by-value and the call-by-

name λ-calculi. In section 4.4 we show that the calculus of records does not have

this property.

Standardization of developments is implied by property 4.2.18 and the bound-

edness of developments.

Property 4.2.18 says that a so-called non-standard pair of development steps

(i.e., a non-evaluation step followed by an evaluation step) can be replaced by a

development sequence which begins with a standard step. The length of the rest of

the sequence is unspecified, and the sequence may have other non-standard pairs.

However, boundedness of developments allows us to use this property to transform

any development sequence into a standard one, as shown in the lemma below:

Lemma 4.3.3. If a calculus has properties 4.2.14 and 4.2.18, then it has standard-

ization of developments (property 4.2.17).

Proof. Let M ′ →∗

dev
M ′

1 be a development sequence. The following construction re-

peatedly applied to this sequence will in a finite number of iterations produce a

standard sequence M ′ ==⇒∗

dev
M ′

2 ◦−−→
∗

dev
M ′

1:
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• Step 1. Check if the given sequence M ′ →∗

dev
M ′

1 is standard. If yes, then the

construction is finished. Otherwise go to step 2.

• Step 2. Since the given sequence is not standard, it can be parsed as follows:

M ′ ==⇒∗

dev
N ′

0 ◦−−→
∗

dev
N ′

1 ◦−−→
dev

N ′
2 ==⇒

dev
N ′

3 →
∗

dev
M ′

1.

Then by property 4.2.18 there exists L′2 such that N ′
1 ==⇒

dev
L′2 →

∗

dev
N ′

3. Then we

replace the initial reduction sequence by the sequence

M ′ ==⇒∗

dev
N ′

0 ◦−−→
∗

dev
N ′

1 ==⇒
dev

L′2 →
∗

dev
N ′

3 →
∗

dev
M ′

1.

and repeat step 1.

To show that this construction terminates, we associate a pair of non-negative inte-

gers (n1, n2) to every sequence S s.t. M ′
S

→∗

dev
M ′

1 in the following way: suppose S is

not standard, then it can be parsed as above, i.e.

M ′ =
S1

=⇒
∗

dev
N ′

0 ◦−
S2−→

∗

dev
N ′

1 ◦−−→
dev

N ′
2 ==⇒

dev
N ′

3 →
∗

dev
M ′

1.

Then n1 is the number of evaluation steps immediately followingM ′, i.e. the length of

the sequence S1, and n2 is the number of non-evaluation steps immediately following

S1, i.e. n2 = m2 + 1, where m2 is the length of the sequence S2. If S is standard,

then it can be parsed as

M ′ =
S1

=⇒
∗

dev
N ′

0 ◦−
S2−→

∗

dev
M ′

1,

and in this case n1 is the length of S1, and n2 is the length of S2.

We consider pairs (n1, n2) to be ordered lexicographically, i.e. (n1, n2) <

(n′1, n
′
2) if and only if (n1 < n′1) or (n1 = n′1 and n2 > n′2). Note the reversal of



62

the sign in the second component of a pair! It is easy to observe that if (n1, n2)

corresponds to a sequence S before an iteration of the construction, and (n′1, n
′
2)

corresponds to S ′ after the iteration, then (n1, n2) > (n′1, n
′
2): either the subsequence

N ′
0 ◦−

S2−→
∗

dev
N ′

1 is non-empty, in which case n1 does not change, and n2 is decreases by

1, or S2 is empty, and then the sequence M ′ =
S1

=⇒
∗

dev
N ′

0 is followed by at least one more

evaluation step, so n1 increases.

On the other hand, if (n1, n2) is associated with a sequence S s.t. M ′
S

→∗

dev
M ′

1,

then (n1, n2) ≤ (MAX[M ′], 0), since a development of M ′ can not have more than

MAX[M ′] steps. Therefore the construction terminates.

4.3.3 Lift and Project in the Call-by-value λ-calculus

The call-by-value λ-calculus has confluence and standardization, so lift and project

are not needed for the computational soundness proof in this calculus. However, we

will show how it would be possible to prove lift and project in this calculus. We will

use these proof ideas as intuition for the proofs of lift and project in the calculus of

records. In this section we focus on the proof of lift; the proof of project is analogous.

We formulate lift and project for the marked calculus, since we use the tech-

nique of marked redexes for proofs of these properties. Using the the notion of de-

velopment (see definition 4.2.11), we formulate the marked version of lift and project

as follows:

Property 4.3.4 (Lift with developments). A calculus has the lift property if

marked(M ′) = {(C, R)} and M ′ ◦−(C,R)−−−→
dev

N ′ ==⇒∗ N ′
1 imply that there exists a sequence

M ′ ==⇒∗ M ′
1 ◦−−→

∗

cd
N ′

1.

Property 4.3.5 (Project with developments). A calculus has the project prop-

erty if marked(M ′) = {(C, R)}, M ′ ◦−(C,R)−−−→
dev

N ′, and M ′ ==⇒∗ M ′
1 imply that there exist
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terms M ′
2, N

′
1 such that M

′
1 ==⇒

∗ M ′
2, N

′ ==⇒∗ N ′
1, and M

′
2 ◦−−→

∗

cd
N ′

1.

(λy.(y @ 1) + (y @ 6)) @ (λx.2 + 3) ((λx.2 + 3) @ 1) + ((λx.2 + 3) @ 6)

((λx.5) @ 1) + ((λx.2 + 3) @ 6)

(λy.(y @ 1) + (y @ 6)) @ (λx.5) ((λx.5) @ 1) + ((λx.5) @ 6)

dev

cd

cd

Figure 4.2: Lift and project in marked call-by-value λ-calculus.

Figure 4.2 illustrates both lift (property 3.4.1) and project (property 3.4.2) in

the call-by-value λ-calculus. If the reductions (λy.(y @ 1) + (y @ 6)) @ (λx.2 + 3) ◦−−→
dev

(λy.(y @ 1) + (y @ 6)) @ (λx.5) and (λy.(y @ 1) + (y @ 6)) @ (λx.5) ==⇒ ((λx.5) @ 1)+

((λx.5) @ 6) are given, then the figure illustrates lift. If the same non-evaluation re-

duction (λy.(y @ 1) + (y @ 6)) @ (λx.2 + 3) ◦−−→
dev

(λy.(y @ 1) + (y @ 6)) @ (λx.5) and

the other evaluation step (λy.(y @ 1) + (y @ 6)) @ (λx.2 + 3) ==⇒ ((λx.2 + 3) @ 1) +

((λx.2 + 3) @ 6) are given, then the figure illustrates project. Note that the arrows

going down are developments since they reduce marked redexes. If the resulting term

does not have any marked redexes, then these reductions are complete developments.

It is important to notice that there is just one redex marked in the term

(λy.(y @ 1) + (y @ 6)) @ (λx.2 + 3): the redex 2 + 3. The terms on the bottom row

do not have any marked redexes, because the redex 2 + 3 has been reduced by the

reductions represented as the arrows going down. The evaluation step on the top

row duplicates the redex 2 + 3. Both copies of the marked redex are reduced by the

reduction steps going down on the right-hand side of the diagram (the development

steps). This example will serve as an intuition for the kinds of diagrams we want to

construct for the calculus of records.

In order to prove lift and project, we need to show two properties:
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M ′
1 M ′

3

M ′
2 M ′

4

cd(C, R) cd

∗

M ′
1 M ′

3

M ′
2 M ′

4

cd(C, R) cd

∗

Elementary lift blah Elementary project

Figure 4.3: Elementary diagrams in call-by-value λ-calculus

Property 4.3.6 (Elementary lift diagram with developments). Suppose that

{(C, R)} ∈ marked(M ′
1). If M

′
1 ◦−

(C,R)−−−→
dev

M ′
2 ==⇒ M ′

4, then there exists M ′
3 s.t. M ′

1 ==⇒

M ′
3 →

∗

dev
M ′

4 (see figure 4.3).

Property 4.3.7 (Elementary project diagram with developments). Suppose

that {(C, R)} ∈ marked(M ′
1). If M

′
1 ◦−

(C,R)−−−→
dev

M ′
2, and M

′
1 ==⇒M ′

3, then there exists M ′
4

s.t. M ′
2 ==⇒M ′

4, and M
′
3 →

∗

dev
M ′

4 (see figure 4.3).

These properties are shown by cases. In particular, these are some of the cases

of a proof of the parallel moves lemma.

Based on the elementary properties, we can construct and prove the diagram

shown in figure 4.4 below. This diagram is obtained by tiling several copies of the

diagram in property 4.3.6. The proof of lift (figure 4.5) uses the tiling property and

standardization of developments (property 4.2.17).

4.4 Problems with the Calculus of Records

There are several reasons why the traditional approach does not apply to the calculus

of records. First, the calculus does not satisfy parallel moves lemma (property 4.3.1).

This is not surprising, since the parallel moves lemma implies confluence, but the

calculus is not confluent.
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M ′
1 M ′

3

Elem. lift

N ′
1 N ′

2

IH

M ′
2 M ′

4

dev dev

∗

dev

∗

dev

∗

Figure 4.4: Lift tiling diagram in call-by-value λ-calculus

M ′ L′1 L′2

IH
VT,
SD

M ′
1

N ′ L′ N ′
1

cd(C, R)

∗

∗

cd

∗

dev∗

cd∗

Figure 4.5: Proof of lift in call-by-value λ-calculus

Example 4.4.1 (Parallel moves lemma fails). The non-confluence example

introduced in section 1.1.3 serves as a counter-example to parallel moves lemma. It

is illustrated in figure 4.6.

[A 7→ λx.B,B 7→ λy.A] ◦−−→ [A 7→ λx.λy.A,B 7→ λy.A]

[A 7→ λx.B,B 7→ λy.A] ◦−−→ [A 7→ λx.B,B 7→ λy.λx.B]

[A 7→ λx.B,B 7→ λy.A] [A 7→ λx.λy.A,B 7→ λy.A]

[A 7→ λx.B,B 7→ λy.λx.B] ?

Figure 4.6: Parallel moves lemma fails
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In the above example, both reduction steps are non-evaluation steps. But lift

and project deal only with cases when at least one step originating from a term is

an evaluation step, therefore in proofs of lift and project we do not need to consider

cases when two non-evaluation steps originate from a term!

In the rest of the section we work with marked terms, since we are trying to

adapt the approach of developments to the record calculus. We use the call-by-value

λ-calculus as an example that gives us intuition. It turns out that the approach

of developments cannot be adopted in the calculus of records in a straightforward

manner. However, we can come up with a notion similar to developments which has

the properties necessary to prove lift and project. Section 4.5 introduces this notion,

which we call γ-development.

We show that we cannot apply the “good-case” approach to the record calculus

in a straightforward way. Let us consider the case of parallel moves lemma when

one of the reductions is an evaluation step. Recall that we require confluence of

evaluation, so we can expect that a property similar to parallel moves lemma will

hold if both reduction steps are evaluation steps. The crucial case is when one of the

steps is an evaluation step, and the other is a non-evaluation step.

M ′
1 M ′

3

marked(M ′
2) = ∅ M ′

2 M ′
4 marked(M ′

4) = ∅

∗

∗

Figure 4.7: An attempt to adapt parallel moves lemma

We would like to get a property similar to property 4.3.2 in the calculus of

records. In particular, we would like to mark a redex in the original term, and then

get a diagram similar to the parallel moves lemma, as illustrated in figure 4.7.

However, we encounter some problems when we try to adapt this property in
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a straightforward way. Consider

M ′
1 = [A 7→ λx.A,B 7→ A]

(in notations of figure 4.7). Here A denotes a substitution redex. It is a non-

evaluation redex because it appears under a lambda. See definition of calculus of

records in section 2.2.3 for details. Reducing the substitution redex in M ′
1 gives the

result

M ′
2 = [A 7→ λx.λx.A,B 7→ A]

But this contradicts our desired property that marked(M ′
2) = ∅! This example

illustrates that developments in the calculus of records are in general not finite. Note

that the example also shows that (C, R)/(C, R) is in general non-empty.

[ A 7→ λx.A,

B 7→ A]
[ A 7→ λx.A,

B 7→ λx.A]

[ A 7→ λx.A,

B 7→ λx.λx.A]

[ A 7→ λx.λx.A,

B 7→ A]
[ A 7→ λx.λx.A,

B 7→ λx.λx.A]
[ A 7→ λx.λx.A,

B 7→ λx.λx.A]

Figure 4.8: Example of non-confluence in marked calculus of records.

Our next attempt to get the desired property is not to mark the result of

the substitution if the redex gets substituted into itself. But then we get another

problem, as illustrated in figure 4.8. The two records [A 7→ λx.λx.A,B 7→ λx.λx.A]

and [A 7→ λx.λx.A,B 7→ λx.λx.A] are not equal in the marked calculus!

These examples show the need for an analog of the development reduction →
dev
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which will allow us to obtain commutative diagrams similar to the parallel moves

property which will hold in the marked calculus. Such a reduction, which we call

γ-development , is introduced in section 4.5.

4.5 γ-Developments

Let M ′ (C1,R1)
→
dev

N ′, and let (C2, R2) ∈ marked(M ′). All the residuals of (C2, R2) w.r.t.

(C1, R1) are marked in N ′ (by definition 4.2.11 and definition 4.2.9). As we have

seen in the previous section, developments in the calculus of records are in general

not finite. However, it turns that if change the definition of developments slightly,

we get a reduction which is finite for the sets of initially marked redexes which occur

in lift and project. We call these reductions γ-developments .

A γ-development reduction is the same as a development reduction →
dev

, except

for the fact that some redexes that would have been marked in the resulting term of

a →
dev

step are not marked in the result of a γ-development . While definition of γ-

development reduction is calculus-specific, the axiomatic definition below states the

requirements that the reduction must satisfy.

Definition 4.5.1 (Axiomatic definition of γ-development step). A γ-development

is defined by a set dom(γ) of marked terms (the domain of →
γ
) and by a relation →

γ

on marked terms so that the following conditions are satisfied:

1. If (C, R) is a non-evaluation redex and marked(M ′) = {(C, R)}, then M ′ ∈

dom(γ);

2. If |M ′
1| = |M

′
2|, marked(M ′

2) ⊂ marked(M ′
1), andM

′
1 ∈ dom(γ), thenM ′

1 →
γ
M ′

2

(in this case we write M ′
1

e
→
γ
M ′

2);

3. If M ′
1 →

γ
M ′

2 and marked(M ′
2) 6= ∅, then M ′

2 ∈ dom(γ);
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4. M ′
1

(C,R)
→
γ

M ′
2 if and only if all of the following is true:

(a) |M ′
1| −

(C,R)−−−→ |M ′
2|,

(b) (C, R) ∈ marked(M ′
1),

(c) If M ′
3 is such that M ′

1 −
(C,R)−−−→M ′

3, then marked(M ′
2) ⊆ marked(M ′

3),

(d) ((C, R)/(C, R)) ∩marked(M ′
2) = ∅.

The above definition defines two kinds of γ-development steps: those that

erase marks on one or more redexes without changing the term (defined in part 2),

and those which reduce a marked redex, similar to regular developments →
dev

(defined

in part 4). We stress this distinction by the following notational convention:

Notation 4.5.2.
(C,R)
→
γ

denotes only γ-development steps that reduce a redex (as de-

fined in definition 4.5.14). We call such reductions non-erasing γ-development steps.

The notation →
γ

without an annotation may refer to either a
(C,R)
→
γ

step or a

e
→
γ

step.

Since S denotes a sequence of redexes, the notation
S

−−→∗

γ
denotes a sequence

of non-erasing γ-development steps.

We use the notation Se for sequences over the set {(C, R)}∪ e, i.e. sequences

which consist of redexes and the symbol e. Then
Se

−−→∗

γ
denotes a sequence of γ-

development steps, some of which are erasing steps, and some non-erasing, as speci-

fied in the sequence Se.

Definition 4.5.3 (Complete γ-developments ). A γ-development sequenceM ′ −−→∗

γ

N ′ is called a complete γ-development if marked(N ′) = ∅. We denote it by M ′ −−→∗

cγ

N ′.
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Definition 4.5.4 (Combined reduction). We say that M ′ reduces to N ′ by a

combined reduction, denoted by M ′ −−→
∪
N ′, if M ′ −−→ N ′ or M ′ →

γ
N ′.

Below we define some properties of γ-developments that are helpful for com-

putational soundness proofs.

Definition 4.5.5 (Strong standardization of γ-developments ). A calculus has

a strong standardization of γ-developments if M ′ −−→∗

cγ
N ′ implies that there exists a

term L′ such that M ′ ==⇒∗

γ
L′ ◦−−→∗

cγ
N ′.

Note thatN ′ does not have any marked redexes, since the reduction L′ ◦−−→∗

cγ
N ′

is a complete γ-development . Consequently, the reduction M ′ ==⇒∗

γ
L′ ◦−−→∗

cγ
N ′ is a

complete γ-development .

The notion of lockstep equivalent evaluation sequence defined below is used

in both lift and project proofs and captures the following intuition: suppose we mark

a non-evaluation redex (C, R) in a term M ′
1, and have reduced this redex by a γ-

development step to get a term M ′
2. Then M ′

2 does not have any residuals of (C, R)

by part 4(d) of definition 4.5.1, i.e. it does not have any marked redexes.

Now consider evaluation sequences originating from M ′
1 and M ′

2. Let M ′
2 ==⇒

N ′
2, then there is “the same” evaluation redex in M ′

1 (up to the subterm (C, R)

reduced in M ′
2 but not in M ′

1), i.e. M ′
1 ==⇒ L′1. The terms L′1 and N ′

2 differ only

by the marked residuals of (C, R) which are present in L′1, but not in N ′
2. However,

after the evaluation step some of these redexes may have become evaluation redexes.

Therefore, to synchronize the two sequences for the next evaluation redex reduced

in N ′
2 one may have to reduce some evaluation residuals of (C, R) in L′1. These

steps extra steps will be γ-development steps, and account for the extra sequence

L′2 ==⇒∗

γ
N ′

1 in the definition below.
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Definition 4.5.6 (Lockstep equivalent evaluation sequences). An evaluation

sequence Se
1 : M ′

1 ==⇒∗

∪
N ′

1 is lockstep equivalent to an evaluation sequence S2 :

M ′
2 ==⇒∗ N ′

2 if marked(M ′
1) = {(C, R)}, M

′
1

(C,R)

◦−−→
cγ

M ′
2, and one of the following is true:

1. Se
1 = ε and S2 = ε, or

2. there exist L′1, L
′
2, L

′
3 such that Se

1 : M ′
1 =

Se′
1

=⇒
∗

L′1 ==⇒ L′2 ==⇒∗

γ
N ′

1, S2 : M ′
2 =

S′
2

=⇒
∗

L′3 ==⇒ N ′
2, N

′
1 −−→

∗

cγ
N ′

2, and Se′
1 is lockstep equivalent to S ′2.

Definition 4.5.7 (Weak standardization of γ-developments ). A calculus has a

weak standardization of γ-developments if for every M ′
1,M

′
2, N

′
1, N

′
2 such that the two

evaluation sequences Se
1 : M ′

1 ==⇒∗

∪
N ′

1 and S2 : M ′
2 ==⇒∗ N ′

2 are lockstep equivalent,

there exists a term L′ such that N ′
1 ==⇒

∗

γ
L′ ◦−−→∗

cγ
N ′

2.

Lemma 4.5.8 (Strong standardization implies weak standardization). Strong

standardization of γ-developments (definition 4.5.5) implies weak standardization of

γ-developments (definition 4.5.7).

Proof. Suppose strong standardization of γ-developments holds. If Se
1 : M ′

1 ==⇒∗

∪
N ′

1

and S2 : M ′
2 ==⇒∗ N ′

2 are lockstep equivalent evaluation sequences, then by defini-

tion 4.5.6 N ′
1 −−→

∗

cγ
N ′

2, so by strong standardization of γ-developments there exists L′

such that N ′
1 ==⇒∗

γ
L′ ◦−−→∗

cγ
N ′

2.

4.6 Elementary Lift and Project Diagrams

Both lift and project properties are proven via “tiling” diagrams. The following

properties, which we call elementary project and lift diagrams, are the building blocks

(or the “tiles”) of these proofs.
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M ′
1 M ′

3

M ′
2 M ′

4

γ(C, R) γ

∗

M ′
1 M ′

3

M ′
2 M ′

4

γ(C, R) γ
∗

Elem. lift diagram 4.6.1 Elem. project diagram 4.6.2

Figure 4.9: Elementary project and lift diagrams

Property 4.6.1 (Elementary lift diagram). Suppose that {(C, R)} ∈ marked(M ′
1).

If M ′
1 ◦−

(C,R)−−−→
γ

M ′
2 ==⇒ M ′

4, then there exists M ′
3 s.t. M ′

1 ==⇒ M ′
3 −−→

∗

γ
M ′

4 (see fig-

ure 4.9).

Property 4.6.2 (Elementary project diagram). Suppose that {(C, R)} ∈ marked(M ′
1).

If M ′
1 ◦−

(C,R)−−−→
γ

M ′
2, and M ′

1 ==⇒ M ′
3, then there exists M ′

4 s.t. M ′
2 ==⇒ M ′

4, and

M ′
3 −−→

∗

γ
M ′

4 (see figure 4.9).

Elementary project diagram above is a restricted form of the parallel moves

property: it can be obtained from the parallel moves property by restricting one of

the given reductions to be an evaluation step, and the other to be a non-evaluation

step. Recall that parallel moves property implies confluence, and therefore does not

hold in the calculus of recursively scoped records.

The above diagrams can be viewed as preservation of an evaluation redex

by a reduction of a non-evaluation one. To make these properties more intuitive,

consider call-by-name and call-by-value λ-calculi. It is easy to see that in these

calculi a reduction of a non-evaluation redex cannot create, duplicate, or remove an

evaluation redex, thus both elementary diagrams hold. The following examples in

the call-by-value calculus illustrate the properties. We give examples of all three

possible positions of an evaluation redex:

1. An outermost redex: (λx.(λy.y @ 2)) @ (λz.3 + 4). Clearly reductions of non-
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evaluation redexes in the operand or the operator cannot change the outermost

evaluation redex.

2. An evaluation redex in the operator: ((λx.x) @ (λy.y)) @ ((λz.z) @ 2). In this

example the redex (λz.z) @ 2 in the operand is a non-evaluation redex, and

reducing this redex does not change the fact that the redex (λx.x) @ (λy.y) in

the operator is the evaluation redex. One can also see that if there were redexes

inside the evaluation redex, reducing those redexes would not have changed the

evaluation redex either.

3. An evaluation redex in the operand: (λx.2 + 3) @ ((λy.(λz.z @ 2)) @ 5). Again,

reducing non-evaluation redexes does not change the evaluation redex.

Also, if a term does not have an evaluation redex, then the term is either a value or

an error (s.a. 3 @ 4), and clearly no reduction in such a term can create an evaluation

redex.

Elementary lift and project diagrams hold in the calculus of recursively scoped

records.

M ′
1 M ′

3

property 4.6.1

N ′
1 N ′

2

IH

M ′
2 M ′

4

γ(C, R) γ

∗

γS′

∗

γ

∗

M ′
1 M ′

3

IH

N ′
1 N ′

2

property 4.6.2

M ′
2 M ′

4

γS′

∗

γ

∗

γ(C, R) γ

∗

Figure 4.10: Inductive step of proofs of lemmas 4.6.3–4.6.4

Lemma 4.6.3. Property 4.6.1 implies the following: if M ′
1 ◦−

S−→
∗

γ
M ′

2 and M
′
2 ==⇒M ′

4,

then there exists M ′
3 s.t. M

′
1 ==⇒M ′

3, and M
′
3 −−→

∗

γ
M ′

4.



74

Proof. The proof is by induction on n, where n is the number of steps in the non-

evaluation sequence S.

The base case when n = 0 is trivial. The base case n = 1 is straightforward

by property 4.6.1.

Induction step. The induction step is illustrated on figure 4.10, terms are

denoted as on the figure. As the inductive hypothesis, suppose the claim holds for

a sequence S ′ of length n, i.e. if N ′
1 ◦−

S′

−→
∗

γ
M ′

2 and M ′
2 ==⇒ M ′

4, then there exists N ′
2

such that N ′
1 ==⇒ N ′

2 and N ′
2 −−→

∗

γ
M ′

4. Let M
′
1 ◦−

S−→
∗

γ
M ′

2, where S = (C, R);S ′, i.e. the

length of S is n + 1. Then by property 4.6.1 there exists M ′
3 such that M ′

1 ==⇒ M ′
3,

M ′
3 −−→

∗

γ
N ′

2.Then M ′
3 −−→

∗

γ
N ′

2 −−→
∗

γ
M ′

4 is a γ-development .

An analogous property based on project diagram also holds:

Lemma 4.6.4. Property 4.6.2 implies the following: if M ′
1 ◦−

S−→
∗

γ
M ′

2, and M
′
1 ==⇒M ′

3,

then there exists M ′
4 s.t. M

′
2 ==⇒M ′

4, and M
′
3 −−→

∗

γ
M ′

4.

Proof. Similarly to the proof of lemma 4.6.3, the proof is by induction on the number

of steps in S. The base case is by property 4.6.2. The induction step is illustrated

on figure 4.10.

4.7 Properties of ==⇒

As we have mentioned earlier, the evaluation relation of the calculus of recursively

scoped records is not a function. In section 3.5.2 we have motivated the requirement

that ==⇒ must be confluent (otherwise the outcome of a term would not be well-

defined). It turns out that to be able to prove lift and project we need to impose

stronger requirements on ==⇒. Note that the reductions below are on marked terms.



75

M ′
1 M ′

3

M ′
2 M ′

4

γ

?

γ

∗

Figure 4.11: γ-confluence of evaluation

Property 4.7.1 (γ-confluence of ==⇒). If M ′
1 ==⇒

γ
M ′

2 and M ′
1 ==⇒ M ′

3, then there

exists M ′
4 such that M

′
2 ==⇒? M ′

4 and M
′
3 ==⇒∗

γ
M ′

4.

Recall that ==⇒? is the reflexive closure of ==⇒. The fact that the evaluation

sequence from M ′
2 to M ′

4 has no more than one step is crucial for the proof of project

(see section 4.8). The proofs use the following consequence of the above property:

Lemma 4.7.2 (Multi-step γ-confluence of ==⇒). Property 4.7.1 implies the fol-

lowing: if M ′
1 ==⇒∗

γ
N ′

1 and M
′
1 ==⇒M ′

2, then there exists N ′
2 such that N

′
1 ==⇒

? N ′
2 and

M ′
2 ==⇒∗

γ
N ′

2.

M ′
1 M ′

2

IH, case 1

L′1 L′2

N ′
1 N ′

2

γ

∗

γ

∗

γ γ

M ′
1 M ′

2

IH, case 2

L′1 L′2

property 4.7.1

N ′
1 N ′

2

γ

∗

γ

∗

γ

?

γ

∗

(a) Proof of lemma 4.7.2, case 1. (b) Proof of lemma 4.7.2, case 2.

Figure 4.12: Inductive steps of proof of lemma 4.7.2

Proof. The proof is by induction on the number of steps in the sequence M ′
1 ==⇒

∗

γ
N ′

1,

denoted by n. The base case n = 0 is trivial.
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The inductive step is illustrated on figure 4.12 Suppose the lemma holds for a

sequence M ′
1 ==⇒

∗

γ
L′1 of n ≥ 0 steps, i.e. M ′

1 ==⇒M ′
2, and we assume that there exists

L′2 such that L′1 ==⇒
? L′2 and M ′

2 ==⇒
∗

γ
L′2.

Let L′1 ==⇒
γ

N ′
1. We need to show that the lemma holds for the sequence

M ′
1 ==⇒∗

γ
N ′

1 of n + 1 steps. We have the following two cases:

Case 1: L′1 = L′2. Then we take N ′
2 = N ′

1. Then M ′
2 ==⇒

∗

γ
N ′

1, and we are done

(see figure 4.12(a)).

Case 2: L′1 ==⇒ L′2. Then by property 4.7.1 there exists N ′
2 such that L′2 ==⇒

∗

γ
N ′

2

and N ′
1 ==⇒

? N ′
2. Then M

′
2 ==⇒∗

γ
N ′

2 which concludes the proof (see figure 4.12(b)).

Note that the calculus of recursively scoped records has the following diamond

property: If M1 ==⇒ M2 and M1 ==⇒ M3, then there exists M4 such that M2 ==⇒ M4

and M2 ==⇒ M4. However, this diamond property does not imply the γ-confluence

of ==⇒, since the definition of a γ-development imposes additional restrictions on the

evaluation relation, but also extends the evaluation relation with the “erasure” steps

(see definition 4.5.1) which correspond to empty steps in the underlying unmarked

calculus.

4.8 Proof of Lift and Project

Lift and project translate into the marked version of a calculus in the following way:

Property 4.8.1 (Lift in marked calculus). If marked(M ′) = {(C, R)}, M ′
(C,R)

◦−−→
cγ

N ′, and N ′ ==⇒∗ N ′
1, then there exists M ′

1 such that M
′ ==⇒∗

∪
M ′

1 and M
′
1 ◦−−→

∗

cγ
N ′

1 (see

figure 4.13).

Property 4.8.2 (Project in marked calculus). If marked(M ′) = {(C, R)},

M ′
(C,R)

◦−−→
cγ

N ′, and M ′ ==⇒∗ M ′
1, then there exist M ′

2 and N ′
1 such that N ′ ==⇒∗ N ′

1,
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M ′ M ′
1

M ′
1

N ′ N ′
1

cγ(C, R)

∪

∗

∗

cγ

∗

M ′ M ′
1

M ′
2

N ′ N ′
1

cγ(C, R)

∗

∗

γ

∗

cγ

∗

Property 4.8.1 Property 4.8.2

Figure 4.13: Lift and project in the “marked” calculus

M ′
1 ==⇒∗

γ
M ′

2, and M
′
2 ◦−−→

∗

cγ
N ′

1 (see figure 4.13).

Lift and project for a marked calculus imply the respective properties for the

associated unmarked calculus:

Lemma 4.8.3. The lift property for a calculus of marked terms (property 4.8.1)

implies lift property for the associated calculus of unmarked terms (property 3.4.1).

Likewise, the project property for a calculus of marked terms (property 4.8.2) implies

project property for the associated calculus of unmarked terms (property 3.4.2).

Proof. We show the proof for lift property, the proof for project is similar. Suppose

M ◦−−→ N ==⇒∗ N1 in the unmarked calculus. Then there exists a redex (C, R) s.t.

M ◦−(C,R)−−−→ N . Let M ′ be a marked term such that |M ′| = M and marked(M ′) =

{(C, R)}. Then M ′ ∈ dom(γ) by definition 4.5.1, condition 1. By definition 4.5.1,

condition 4(d) M ′ ◦−(C,R)−−−→
γ

N ′ implies that marked(N ′) = ∅. By lemma 4.2.10 N ′ ==⇒∗

N ′
1 implies that marked(N ′

1) = ∅. Then |N
′| = N and |N ′

1| = N1.

By property 3.4.1 there exists a marked term M ′
1 such that M ′ ==⇒∗

∪
M ′

1 and

M ′
1 ◦−−→

∗

cγ
N ′

1. Let M1 = |M ′
1|. Then by condition 4(a) of definition 4.5.1 and by

definition of the combined reduction −−→
∪

we get M ==⇒∗ M1 ◦−−→
∗ N1.

Theorem 4.8.4 (Lift). Suppose a calculus has the following properties:
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1
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γ
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Figure 4.14: Inductive step of proof of theorem 4.8.4

• Property 4.5.7 (weak standardization of developments),

• Property 4.6.1 (elementary lift property).

Then the calculus has the lift property (property 4.8.1).

Proof. Assume that the calculus has properties 4.5.7 and 4.6.1. Let marked(M ′) =

{(C, R)}, M ′
(C,R)

◦−−→
cγ

N ′, and N ′ ==⇒∗ N ′
1.

We want to prove the following stronger claim: there exists M ′
1 such that

M ′ ==⇒∗

∪
M ′

1, M
′
1 ◦−−→

∗

cγ
N ′

1, and the sequences M ′ ==⇒∗

∪
M ′

1 and N ′ ==⇒∗ N ′
1 are lockstep

equivalent. The claim implies the statement of the theorem. The proof is by induction

on the number of steps in the latter evaluation sequence. The proof is illustrated on

figure 4.14.

The base case N ′ = N ′
1 is trivial. As an inductive hypothesis, suppose the

claim holds for a sequence N ′ ==⇒∗ L′ of n steps, i.e. there exists L′1 such that

M ′ ==⇒∗

∪
L′1, L

′
1 ◦−−→

∗

cγ
L′, and the sequences M ′ ==⇒∗

∪
L′1 and N ′ ==⇒∗ L′ are lockstep

equivalent.

Let L′ ==⇒ N ′
1. The calculus has property 4.6.1, therefore by lemma 4.6.3

L′1 ◦−−→
∗

cγ
L′ and L′ ==⇒ N ′

1 imply that there exists L′2 such that L′1 ==⇒ L′2, L
′
2 ◦−−→

∗

γ
N ′

1.

M ′
(C,R)

◦−−→
cγ

N ′ implies that marked(N ′) = ∅. By lemma 4.2.10 N ′ ==⇒∗ N ′
1 implies that

marked(N ′
1) = ∅, and therefore the sequence L′2 ◦−−→

∗

γ
N ′

1 is a complete development.
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Therefore the sequences M ′ ==⇒∗

∪
L′1 ==⇒ L′2 and N ′ ==⇒∗ N ′

1 are lockstep equivalent,

and by property 4.5.7 there exists M ′
1 such that L′1 ==⇒∗

γ
M ′

1 ◦−−→
∗

cγ
N ′

1. Note that by

definition 4.5.6 the sequences M ′ ==⇒∗

∪
L′1 ==⇒ L′2 ==⇒

∗

γ
M ′

1 and N ′ ==⇒∗ N ′
1 are lockstep

equivalent.

M ′ L′1 M ′
1

aaa4.7.2
case1

IH L′2 =M ′
2

a

a

N ′ L′3 = N ′
1

Case 1 of proof of theorem 4.8.5

cγ(C, R)

∗

∗

γ

∗

cγ

∗

γ

∗

M ′ L′1 M ′
1

a

4.7.2
a

IH L′2 L′4

4.6.2,
4.6.4,
and 4.5.7

M ′
2

N ′ L′3 N ′
1

cγ(C, R)

∗

∗

γ

∗

γ

∗

cγ

∗

γ∗

cγ∗

Case 2 of proof of theorem 4.8.5

Figure 4.15: Inductive step of proof of theorem 4.8.5 (2 cases).

Theorem 4.8.5 (Project). Suppose a calculus has the following properties:

• Property 4.5.7 (weak standardization of developments),

• Property 4.6.2 (elementary project property),
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• Property 4.7.1 (γ-confluence of evaluation).

Then the calculus has the project property (property 4.8.2).

Proof. The proof is similar to that of theorem 4.8.4. It is illustrated on figure 4.15.

Suppose the calculus has the three required properties, marked(M ′) = {(C, R)},

M ′
(C,R)

◦−−→
cγ

N ′, and M ′ ==⇒∗ M ′
1.

We strengthen the claim similarly to the proof of theorem 4.8.4: we want to

prove that there exist M ′
2 and N ′

1 such that M ′
1 ==⇒∗

γ
M ′

2, M
′
2 ◦−−→

∗

cγ
N ′

1, N
′ ==⇒∗ N ′

1,

and the sequences M ′ ==⇒∗ M ′
1 ==⇒

∗

γ
M ′

2 and N ′ ==⇒∗ N ′
1 are lockstep equivalent.

The proof is by induction on the number of steps in the sequence M ′ ==⇒∗ M ′
1.

The base case of zero steps is trivial. Suppose that the claim holds for a sequence

M ′ ==⇒∗ L′1, i.e. there exist L′2, L
′
3 such that L′1 ==⇒∗

γ
L′2, L

′
2 ◦−−→

∗

cγ
L′3, N

′ ==⇒∗ L′3, and

the sequences M ′ ==⇒∗ L′1 ==⇒∗

γ
L′2 and N ′ ==⇒∗ L′3 are lockstep equivalent. Suppose

L′1 ==⇒M ′
1. We want to show that the claim holds for the sequence M ′ ==⇒∗ M ′

1.

By property 4.7.1 and lemma 4.7.2 L′1 ==⇒M ′
1 and L

′
1 ==⇒

∗

γ
L′2 imply that there

exists L′4 such that L′2 ==⇒? L′4 and M ′
1 ==⇒∗

γ
L′4. We have the following two cases:

Case 1. L′2 = L′4. Then we take M ′
2 = L′2 and N ′

1 = L′3, and the claim holds.

Note that the sequences M ′ ==⇒∗ M ′
1 ==⇒∗

γ
L′2 = M ′

2 and N ′ ==⇒∗ L′3 = N ′
1 are lockstep

equivalent (see definition 4.5.6).

Case 2. L′2 ==⇒ L′4. By lemma 4.6.4 property 4.6.2 implies that there exists

N ′
1 such that L′3 ==⇒ N ′

1 and L′4 −−→
∗

γ
N ′

1. By lemma 4.2.10 marked(N ′
1) = ∅ since

marked(N ′) = ∅, and therefore L′4 −−→
∗

cγ
N ′

1. The sequences M
′ ==⇒∗ L′1 ==⇒M ′

1 ==⇒∗

γ
L′4

and N ′ ==⇒∗ L′3 ==⇒ N ′
1 are lockstep equivalent by definition 4.5.6, and therefore there

exists M ′
2 such that L′4 ==⇒∗

γ
M ′

2 ◦−−→
∗

cγ
N ′

1. The sequences M ′ ==⇒∗ L′1 ==⇒ M ′
1 ==⇒∗

γ

L′4 ==⇒∗

γ
M ′

2 and N ′ ==⇒∗ L′3 ==⇒ N ′
1 are lockstep equivalent, and the induction claim

is proven.
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4.9 Properties Needed to Prove Lift and Project

Sections 4.5–4.8 outline a general proof of lift and project. This proof abstracts over

calculus-specific details, giving axiomatic definitions of certain calculus entities and

relations and by specifying properties of a calculus which imply lift and project.

In order to apply this framework, one needs to instantiate these definitions

for a particular calculus and to show that the calculus satisfies the properties. Below

is a complete list of such definitions and properties.

The two axiomatic definitions that we need to instantiate are:

1. definition of a residual (definition 4.2.5), we also need to show that residuals

satisfy the unique ancestor assumption (assumption 4.2.6);

2. definition of a γ-development reduction (definition 4.5.1).

Given concrete definitions satisfying the axiomatic ones listed above, one

needs to show the following properties in order to prove lift and project:

1. The elementary lift diagram property (property 4.6.1);

2. The elementary project diagram property (property 4.6.2);

3. The weak standardization of γ-developments (definition 4.5.7);

4. The γ-confluence of ==⇒ property (property 4.7.1).

The details of the axiomatic definitions and the properties are given in sec-

tions 4.5–4.7. The proofs of lift and project are given in section 4.8.



Chapter 5

Applications and Results

5.1 Soundness of the Term Calculus

In this section we give the computational soundness proof for the the calculus defined

in figure 2.3 in section 2.2.3. We use the symbol T to denote this calculus. We

use T as a subscript for relations in the term calculus. TermT ,ContextT , and

EvalContextT to denote sets of terms, one-hole contexts, and evaluation contexts

of T , respectively.

We give the calculus-specific definition of residual for T and show that it

satisfies the axiomatic definition 4.2.5. We prove that the calculus is computationally

sound by showing that it has confluence, class preservation, and standardization. The

approach in this section largely follows the line of reasoning in [Bar84], in particular

the proofs of boundedness of developments, confluence, and standardization. The

approach has been slightly extended to cover the case of constants and operations on

constants in the proof of boundedness of developments. A more significant change

is that instead of head redexes we use evaluation redexes defined via an evaluation

context.

82
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5.1.1 Notations and Definitions

Before we define residuals in T , let us introduce some important notations.

Definition 5.1.1 (Multi-hole contexts in T ). Amulti-hole context in T is defined

as follows:

A,B,C ::= M | 2 | C @ C | C op C | λx.C.

H(C) denotes the number of holes in a context C (defined in the obvious way).

ContextnT denotes the set {C | H(C) = n}. Note that Context0
T = TermT ,

Context1T = ContextT .

If C ∈ ContextnT , then C{A1, . . . ,An} denotes the result of filling the holes

of C left-to-right with contexts A1, . . . ,An.

By convention the notation (C, R) for a redex implies that C ∈ Context1
T .

Definition 5.1.2 (glb of contexts). The greatest lower bound of two contexts

glb(C1,C2) is a context defined the following way:

glb(M,M) = M,

glb(C,2) = 2 for any C,

glb(2,C) = 2 for any C,

glb(C1 @ C2,C
′
1 @ C′2) = glb(C1,C

′
1) @ glb(C2,C

′
2),

glb(C1 op C2,C
′
1 op C′2) = glb(C1,C

′
1) op glb(C2,C

′
2),

glb(λx.C1, λx.C2) = λx. glb(C1,C2),

otherwise undefined

The greatest lower bound of n > 2 contexts is defined as

glb(C1,C2, . . . ,Cn) = glb(glb(C1,C2),C3, . . . ,Cn).
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Now we give definition of a set of residuals of a redex in T . It is easy to

check that the set of residuals defined below satisfies the properties postulated in the

axiomatic definition 4.2.5.

Definition 5.1.3. Let (C1, R1) be a redex in a term M , and suppose M −(C2,R2)−−−−→T N .

A set of residuals of (C1, R1) w.r.t. the reduction−
(C2,R2)−−−−→T (denoted (C1, R1)/(C2, R2))

is defined as follows: let A = glb(C1,C2), and let R2 Ã Q2, then

1. if C1 = C2 (and therefore R1 = R2), then (C1, R1)/(C2, R2) = ∅,

2. if A ∈ Context2T , then (C1, R1)/(C2, R2) = {(A{2, Q2}, R1)} (assuming with-

out loss of generality that R1 fills the first hole in A).

3. if M = A{λx.Bn{x, . . . , x} @ V }, and R2 = λx.Bn{x, . . . , x} @ V , where Bn

contains all occurrences of x in the operand, and V = C{R1}, then (C1, R1)/(C2, R2) =

{(A{Bn{V, . . . , V,Ci, V, . . . V }}, R1) | 1 ≤ i ≤ n}, where Ci is the context C

filling the i-th hole of Bn.

4. ifM = A{λx.B{R1} @ V }, where R2 = λx.B{R1} @ V , then (C1, R1)/(C2, R2) =

{(A{B}, R1[x := V ])}.

5. if M = A{R1}, where R1 = B{R2}, then (C1, R1)/(C2, R2) = {(A,B{Q2})}.

A set of residuals of a set of redexes with respect to a reduction step and a set

of residuals of a set of redexes with respect to a reduction sequence are defined in def-

inition 4.2.7. Reductions on marked terms corresponding to terms of T is defined

in definition 4.2.9, developments and complete developments are defined in 4.2.11

and 4.2.12, respectively.
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Below we prove an important property of the term calculus: boundedness of

developments. Even though the proof is traditional (see Chapter 11 of [Bar84]), we

give it in some detail, since some notions defined for the proof will be used later in

the proof of boundedness of γ-developments of the calculus of records. In particular

the notion of a weighting introduced below will be used in both this and the next

section.

We say that a term N has the distinct variables property if all bound variables

in N are distinct and are different from all free variables of N . It is a fact that every

term M can be α-renamed to a term N which has the distinct variables property.

In [MT02] we give a formal framework with explicit and rigorous treatment of α-

renaming. In this presentation we assume that all terms that we consider have the

distinct variables property. All properties shown here hold up to α-renaming of term

(see [MT02] for details).

5.1.2 Developments are Bound

Definition 5.1.4. A calculus of weighted terms Tw is defined as follows: let n range

over positive integers, then

xn ∈ Tw,

cn ∈ Tw,

ln ∈ Tw

λx.M ∈ Tw if M ∈ Tw

M @ N ∈ Tw if M,N ∈ Tw

M op N ∈ Tw if M,N ∈ Tw
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Here n is called a weight of the respective variable, constant, or label. Note that a

variable immediately preceded by a lambda does not have a weight.

If M ∈ Tw, the measure of M (denoted ||M ||) is by definition the sum of all

weights (of variables, constants, and labels) occurring in M . Note that ||M ||> 0.

Assuming that all occurrences of variables (except for those immediately pre-

ceded by a lambda), constants, and labels in a term M1 ∈ Tw are ordered by their

position from left to right inM1, we can consider M as a pair (M, I), where M ∈ T is

a term obtained from M1 by erasing all weights, and I is a list of weights of variables,

labels, and constants in M1 from left to right. I is called a weighting of M . Note

that there is a one-to-one correspondence between terms M1 ∈ Tw and pairs (M, I).

We write I(x), where x is a particular occurrence of x in M , to denote the

weight of the occurrence of x in the corresponding M1 ∈ Tw, and similarly for I(c)

and I(l).

We define reduction on weighted terms as follows:

Definition 5.1.5. Let M,N ∈ Tw. Then M −−→ N if and only if M = C{R},

N = C{Q}, and one of the following takes place:

• R = (λx.M̃) @ V , Q = M̃ [x := V ], where M [x := N ] is defined as follows:

xn[x := N ] = N,

yn[x := N ] = yn if y 6= x,

cn[x := N ] = cn,

ln[x := N ] = ln,

and the rest of the rules as usual.

• R = cn1 op cm2 , Q = c
max(n,m)
3 , where c3 = δ(c1, c2, op ).
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In the above definition C is a context over terms of Tw. We omit a straight-

forward definition of such contexts.

Note that since terms of Tw are in one-to-one correspondence with pairs (M, I),

definition 5.1.5 also defines a reduction on such pairs.

Definition 5.1.6. A weighting I is called a decreasing weighting of a marked term

M ′ if for any (C, R) ∈ marked(M ′) such that R = (λx.N) @ V for all occurrences of

x in N it is the case that || x ||>|| V ||.

Lemma 5.1.7. For any M ′ there exists a decreasing weighting.

Proof. We assign weights of non-negative integers in increasing order, starting at

0, to all occurrences of variables, constants, and labels in M ′ in the right-to-left

order. Then the weight of the i-th occurrence is 2i. The weighting is decreasing since

2n > 2n−1 + · · ·+ 2 + 1. The weighting is decreasing for any redex in M ′, therefore

it is decreasing for all redexes in marked(M ′).

We extend the reduction to terms with marked redexes and weights. Such

terms are represented as pairs of a marked term M ′ and its weighting I.

Definition 5.1.8. We say that a pair (M ′
1, I1) reduces to a pair (M ′

2, I2) by a redex

(C, R) (denoted (M ′
1, I1) −

(C,R)−−−→ (M ′
2, I2)) if both conditions below hold:

• (M1, I1) −
(C,R)−−−→ (M2, I2), where M1 = |M

′
1| and M2 = |M

′
2| as defined in 5.1.5.

• M ′
1 −

(C,R)−−−→M ′
2 by the reduction in the marked calculus.
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Convention: the notation (M ′, I) assumes that I is a weighting of M = |M ′|.

Trivially generalizing definition of developments to pairs (M ′I), we say that a devel-

opment step of (M ′, I) is a reduction step that reduces a redex in marked(M ′).

Note: in the lemma below we consider measure || · || on pairs (M, I), since

this measure is defined on terms of Tw which are in one-to-one correspondence with

such pairs.

Lemma 5.1.9. If (M ′
1, I1) −

(C,R)−−−→ (M ′
2, I2), and I1 is a decreasing weighting of M ′

1,

then I2 is a decreasing weighting of M
′
2, and || (M1, I1) ||>|| (M2, I2) ||, where M1 =

|M ′
1| and M2 = |M ′

2|.

Proof. The proof is a straightforward proof by cases, analogous to the proof in Chap-

ter 11 of [Bar84].

Lemma 5.1.10. Any development of a pair M ′ is has no more than || (M, I) ||

steps, where M = |M ′|, and I is the decreasing weighting of M ′ as constructed

in lemma 5.1.7.

Proof. By lemma 5.1.7 there exists a decreasing weighting of (M,F ), let I be such

a weighting. Consider a development of (M,F, I). By lemma 5.1.9 for every de-

velopment step (M,F, I) →
dev

(M ′, F ′, I ′), where I is decreasing, we have: I ′ is also

decreasing, and || (M, I) ||<|| (M ′, I ′) ||. Since || (M, I) ||> 0 for any well-defined

pair (M, I), no developments of M ′ has more than || (M, I) || steps.

5.1.3 Parallel Moves Lemma

In order to prove confluence of T , we prove a parallel move lemma (lemma 5.1.16

below) for terms with sets of marked redexes. To do this, we need to show not

only weak confluence for unmarked terms, but also that for any marked redex in the
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original term the set of its residuals on both reduction paths given by the parallel

move lemma is the same. Note that in general (i.e. for arbitrary reduction paths, not

necessarily those given by the parallel move lemma) the former does not imply the

latter: it is possible that a term M reduces to a term N by two different reduction

paths, but a marked redex in M has different residual sets in M . For more on this

issue see discussion of strongly equivalent reductions in [Bar84].

We prove parallel move lemma in two steps: first we show the property for one

marked redex (lemma 5.1.15), and then generalize it to an arbitrary set of marked

redexes.

Before we prove the lemmas, we need to define terminology for mutual posi-

tions of two subterms in a term.

Definition 5.1.11. 1. Two subterms occurrences (C1, N1) and (C2, N2) of a term

M (see definition 4.2.2) are independent if there exists a two-hole context A

s.t. C1 = A{2, N2} and C2 = A{N1,2} or, alternatively, C1 = A{N2,2} and

C2 = A{2, N1}. Note that this implies M = A{N1, N2} or M = A{N2, N1}.

2. If (C1, N1) and (C2, N2) are subterms of the same term M and are not indepen-

dent, then it must be the case that either N2 is a subterm of N1 (in which case

we say that (C1, N1) contains (C2, N2)) or vice versa (i.e. (C2, N2) contains

(C1, N1)). As in case 1, sometimes we will omit the contexts, e.g. say that N1

contains N2.

3. We say that two redexes (C1, R1) and (C2, R2) of a term M are independent

(respectively (C1, R1) contains (C2, R2)) if they are independent as subterms

(respectively (C1, R1) contains (C2, R2) as subterms).
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Now we state and prove some important properties of redexes and evaluation

contexts which will be used in further proofs, both for the term and for the core

module calculus.

Lemma 5.1.12. If R is a redex and x is not bound in R, then R[x := V ] is a redex.

If E ∈ EvalContextT and x is not bound in E (i.e. there is no A, B such

that E = A{λx.B}) then E[x := V ] ∈ EvalContextT

Proof. The two cases of a redex are c1 op c2 and λy.M @ V , in both cases the claim

clearly holds.

The proof for E ∈ EvalContextT is straightforward by induction on the

structure of an evaluation context.

Lemma 5.1.13. If R = A{l} is a redex, then R1 = A{V } is also a redex.

If E = A{2, l} ∈ EvalContextT (respectively E = A{l,2} ∈ EvalContextT ),

then E′ = A{2, V } ∈ EvalContextT (respectively E′ = A{V,2} ∈ EvalContextT ).

Proof. Similar to the proof of lemma 5.1.12. Note that labels in a term are not bound,

therefore the occurrence of l is free in a redex or in an evaluation context.

Lemma 5.1.14. If E = A{2, R} ∈ EvalContextT (or E = A{R,2} ∈ EvalContextT )

and R ÃT Q, then E′ = A{2, Q} ∈ EvalContextT (respectively E′ = A{Q,2} ∈

EvalContextT ).

Proof. By induction on the structure of an evaluation context.

The following is a key lemma for many subsequent proofs. In addition to weak

confluence of the calculus reduction −−→T , it shows that for any marked redex in M1

its residuals are the same on both reduction paths. We also show confluence of a
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complete development of (C1, R1)/(C2, R2) for any two redexes. Note that we do not

show and do not use a general confluence of complete developments, i.e. confluence

of a complete development of an arbitrary F/S, even though such confluence holds in

T . This is because our goal is to show standardization of developments, and for this

purpose it is sufficient to show that a non-evaluation step followed by an evaluation

step in a development can be replaced by a development sequence which starts with

an evaluation step (corollary 5.1.23). This property, in addition to boundedness of

developments that we have already shown, implies standardization of developments.

Lemma 5.1.15. Let marked(M ′
1) = {(A, R̃)}. Suppose M

′
1 −

(C1,R1)−−−−→ M ′
2, M

′
1 −

(C2,R2)−−−−→

M ′
3, and (C1, R1) 6= (C2, R2). Then there exists M ′

4 s.t. M ′
2 −

(C2,R2)/(C1 ,R1)−−−−−−−−−→
∗
M ′

4,

M ′
3 −

(C1,R1)/(C2,R2)−−−−−−−−−→
∗
M ′

4.

Additionally, for every reduction sequenceM ′
2 −

(C2,R2)/(C1,R1)−−−−−−−−−→
∗
M ′′

4 the resulting

termM ′′
4 = M ′

4, and the same for the reduction sequencesM
′
3 −

(C1,R1)/(C2 ,R2)−−−−−−−−−→
∗

M ′′
4 .

Proof. The proof is by cases on mutual positions (and the kinds) of the three redexes

in M ′
1. We show enough cases to demonstrate the proof technique. The other cases

are similar to the ones shown. We don’t list cases symmetric to the ones given (i.e.

those obtained by switching (C1, R1) and (C2, R2)). We suppose that R1 Ã Q1,

R2 Ã Q2, R̃Ã Q̃.

1. All three redexes are independent - trivial.

2. (A, R̃) = (C1, R1), (C2, R2) is independent from (C1, R1) - trivial.

3. (A, R̃) = (C1, R1), (C2, R2) is contained in (C1, R1).

Since (C1, R1) contains (C2, R2), it must be the case that R1 = (λx.N1) @ V1.

We have two subcases:
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• N1 = B{R2, x, . . . , x}, i.e. N1 has several occurrences of x and an occur-

rence1 of R2. Then

(λx.B{R2, x, . . . , x}) @ V1 −−→T B{R2, V1, . . . , V1} −−→T

B{Q2, V1, . . . , V1},

(λx.B{R2, x, . . . , x}) @ V1 −−→T (λx.B{Q2, x, . . . , x}) @ V1 −−→T

B{Q2, V1, . . . , V1}.

• R1 = (λx.B{x, . . . , x}) @ λy.B̃{R2}. Then

(λx.B{x, . . . , x}) @ λy.B̃{R2} −−→T B{λy.B̃{R2}, . . . , λy.B̃{R2}} −−→∗
T

B{λy.B̃{Q2}, . . . , λy.B̃{Q2}},

(λx.B{x, . . . , x}) @ λy.B̃{R2} −−→T (λx.B{x, . . . , x}) @ λy.B̃{Q2} −−→T

B{λy.B̃{Q2}, . . . , λy.B̃{Q2}}.

In both cases since (A, R̃) = (C1, R1), (A, R̃) does not have a residual in the

resulting term on both reduction paths. The second part of the lemma follows

from the observation that the order in which copies of R2 are reduced in the

multi-step reduction does not matter.

4. (A, R̃) = (C1, R1), (C2, R2) contains (C1, R1). By the result of the previous

case if a redex contains another redex, then they can be reduced in any order.

Since (C2, R2) in the previous case does not have a residual on any of the two

reduction paths, we conclude that (A, R̃) does not have a residual as well.

5. (C1, R1) contains (C2, R2), (A, R̃) is independent from both (C1, R1) and (C2, R2).

In this case M1 = B{R1, R̃}. By case 3 we know that since (C1, R1) contains

1Here and below we show only one ordering of occurrences of subterms in a term, provided all
other orderings are analogous.
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(C2, R2), the two redexes can be performed in any order. (A, R̃) is independent

from these redexes, so clearly it has the same residual on both reduction paths.

As in case 3, the order in which copies of R2 are reduced in the multi-step

reduction does not matter.

6. (C1, R1) contains (C2, R2), (A, R̃) is contained in (C1, R1), (A, R̃) is indepen-

dent from (C2, R2).

In this case R1 = (λx.N1) @ V1, and we have the following 4 subcases:

• R1 = (λx.B{R2, R̃, x, . . . , x}) @ V1. In this case both reduction paths lead

to a term B{Q2, R̃, V1, . . . , V1}.

• R1 = (λx.B{R2, x, . . . , x}) @ λy.B̃{R̃}. Both reduction paths lead to a

term B{Q2, λy.B̃{R̃}, . . . , λy.B̃{R̃}}.

• R1 = (λx.B{R̃, x, . . . , x}) @ λy.B̃{R2}. The resulting term on both paths

is B{R̃, λy.B̃{Q2}, . . . , λy.B̃{Q2}}.

• R1 = (λx.B{x, . . . , x}) @ λy.B̃{R2, R̃}. The resulting term on both paths

is B{λy.B̃{Q2, R̃}, . . . , λy.B̃{Q2, R̃}}.

In the second and the last cases the redex (A, R̃) gets duplicated, but in all 4

cases the set of residuals of (A, R̃) is the same on both reduction paths.

In the first two cases both resulting reductions are one-step. In the other two

cases we observe, as before, that the reduction of the multiple copies of R2 can

be performed in any order with the same resulting term.

7. (C1, R1) contains (C2, R2), (A, R̃) contains (C1, R1).

In this case R̃ = (λx.Ñ) @ Ṽ . Let Q′1 be a term s.t. M1 = C1{R1}

−(C1,R1)−−−−→ C1{Q1} −
(C2,R2)/(C1 ,R1)−−−−−−−−−→

∗
C1{Q

′
1} By case 1 it is also the case that
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C1{R1} −
(C2,R2)−−−−→ C1{R

′
1} −

(C1,R1)/(C2,R2)−−−−−−−−−→
∗

C1{Q
′
1}. We have two subcases:

• A{R̃} = A{(λx.B{R1}) @ Ṽ } −(C1,R1);(C2,R2)/(C1,R1)−−−−−−−−−−−−−→
∗

A{(λx.B{Q′1}) @ Ṽ },

so the residual of (A, R̃) on both reduction paths is (A, (λx.B{Q′1}) @ Ṽ ),

• A{R̃} = A{(λx.Ñ) @ λy.B{R1}} −
(C1,R1);(C2,R2)/(C1 ,R1)−−−−−−−−−−−−−→

∗
A{(λx.Ñ) @ λy.B{Q′1}},

so the residual of (A, R̃) on both reduction paths is (A, (λx.Ñ) @ λy.B{Q′1}).

As before, if the reduction of R1 duplicates R2, then the order in which copies

of R2 are reduced does not matter.

8. (C1, R1) contains (C2, R2), (A, R̃) is contained in (C2, R2). Similar to the pre-

vious cases.

9. (C1, R1) contains (C2, R2), (A, R̃) is contained in (C1, R1), (A, R̃) contains

(C2, R2). Similar to the previous cases.

10. (C1, R1) and (C2, R2) are independent, (A, R̃) contains both (C1, R1) and (C2, R2).

Similar to the previous cases.

11. (C1, R1) and (C2, R2) are independent, (A, R̃) contains (C1, R1), but not (C2, R2).

Similar to the previous cases.

12. (C1, R1) and (C2, R2) are independent, (A, R̃) is contained in (C1, R1). Similar

to the previous cases.

Lemma 5.1.16 (Parallel Moves Lemma). Let M ′
1 −

(C1,R1)−−−−→ M ′
2, M

′
1,−

(C2,R2)−−−−→ M ′
3.

Then there exists M ′
4 such that M

′
2 −

(C2,R2)/(C1,R1)−−−−−−−−−→
∗
M ′

4, M
′
3 −

(C1,R1)/(C2,R2)−−−−−−−−−→
∗
M ′

4.

Proof. By induction on the number of redexes in marked(M ′
1). The base case (marked(M ′

1)

has one redex) is by lemma 5.1.15.
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Suppose M ′′
1 is such that |M ′′

1 | = |M
′
1| and marked(M ′′

1 ) contains n redexes.

Let M ′′
1 −

(C1,R1)−−−−→ M ′′
2 and M ′′

1 −
(C2,R2)−−−−→ M ′′

3 . By the inductive hypothesis assume that

there exists M ′′
4 such that M ′′

2 −
(C2,R2)/(C1,R1)−−−−−−−−−→

∗
M ′′

4 and M ′′
3 −

(C1,R1)/(C2,R2)−−−−−−−−−→
∗
M ′′

4 .

Let M ′′′
1 be such that |M ′′′

1 | = |M
′
1| and marked(M ′′′

1 ) = marked(M ′′
1 ) ∪

{(A, R̃)}, where (A, R̃) 6∈ marked(M ′′′
1 ). Let M̃ ′

1 be such that |M̃ ′
1| = |M

′
1| and

marked(M̃ ′
1) = {(A, R̃)}. Let M̃ ′

1 −
(C1,R1)−−−−→ M̃ ′

2 and M̃ ′
1 −

(C2,R2)−−−−→ M̃ ′
3. By lemma 5.1.15

there exists M̃ ′
4 such that M̃ ′

2 −
(C2,R2)/(C1 ,R1)−−−−−−−−−→

∗
M̃ ′

4 and M̃ ′
3 −

(C1,R1)/(C2,R2)−−−−−−−−−→
∗
M̃ ′

4.

By lemma 5.1.15 all sequences of the form −(C,R)/(C′,R′)−−−−−−−→
∗

end at the same

term. Therefore we can assume that the sequences −(C2,R2)/(C1 ,R1)−−−−−−−−−→
∗
and−(C1,R1)/(C2 ,R2)−−−−−−−−−→

∗

constructed for the initial marked term M ′
1 in the inductive hypothesis. Then M̃ ′

4 is

the same term as M ′
4 up to marked redexes, i.e. |M̃ ′

4| = |M
′
4|. By the same argument

|M ′′
4 | = |M

′
4|.

Finally, by definition of marked reductions 4.2.9 and by definition of residu-

als of sets of redexes 4.2.7 M ′′′
1 −

(C1,R1)−−−−→ M ′′′
2 , where marked(M ′′′

2 ) = marked(M ′′
2 ) ∪

marked(M̃ ′
2), andM

′′′
1 −

(C2,R2)−−−−→M ′′′
3 , where marked(M ′′′

3 ) = marked(M ′′
3 )∪marked(M̃ ′

3)

imply thatM ′′′
2 −

(C2,R2)/(C1,R1)−−−−−−−−−→
∗
M ′′′

4 , where marked(M ′′′
4 ) = marked(M ′′

4 )∪marked(M̃ ′
4),

and M ′′′
3 −

(C1,R1)/(C2,R2)−−−−−−−−−→
∗

M ′′′
4 .

5.1.4 Confluence of T

An important corollary of the finiteness of developments and the parallel move lemma

is a so-called strip lemma which allows, in particular, to prove confluence of the

calculus relation. Our proof of confluence of−−→ is similar to that in [Bar84] (Chapters

11 and 12).

Lemma 5.1.17 (Strip Lemma). Let M ′
1 −−→ M ′

2, M
′
1 −−→

∗ M ′
3. Then there exists

M ′
4 such that M

′
2 −−→

∗ M ′
4, M

′
3 −−→

∗ M ′
4.
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Proof. Let (C, R) be the redex reduced in the reduction M ′
1 −−→M ′

2, and let S be the

reduction sequence M ′
1 −−→

∗ M ′
3.

Claim 1. Given M ′
1 −

(C,R)−−−→ M ′
2 and M ′

1 −
S−→
∗
M ′

3, there exists M ′
4 such that

M ′
2 −

S′

−→
∗
M ′

4 for some sequence S ′, and M ′
3 −

(C,R)/S−−−−→
∗

M ′
4.

We prove the claim by induction on the number of steps in S. Base case

follows immediately from lemma 5.1.16. Induction step: suppose Claim 1 holds for

a sequence S of n steps. Let us consider a sequence S; (A, R̃) of n + 1 steps such

that M ′
1 −

S−→
∗
N ′

1 −
(A,R̃)−−−→ M ′

3. By the inductive hypothesis there exists N ′
2 such that

M ′
2 −

S′

−→
∗
N ′

2 and M ′
3 −

(C,R)/S−−−−→
∗
N ′

2.

Let F̂ = (C, R)/(S; (A, R̃)), and let F̃ = (A, R̃)/S ′′, where S ′′ is the reduction

sequence N ′
1 −

(C,R)/S−−−−→
∗
N ′

2. Let (C′, R′) be the first redex reduced in S ′′, i.e. N ′
1

−(C
′,R′)−−−→ N ′

3. By lemma 5.1.16 there exists M ′ such that M ′
3 −

(C′,R′)/(A,R̃)−−−−−−−→
∗

M ′ and

N ′
1 −

(C′,R′)−−−→ N ′
3 −

(A,R̃)/(C′,R′)−−−−−−−→
∗

M ′. Now we apply lemma 5.1.16 to the first redex in the

sequence −(A,R̃)/(C′,R′)−−−−−−−→
∗

and the first redex in −(C
′,R′)/(A,R̃)−−−−−−−→

∗

, and so on. This process is

guaranteed to terminate, because all redexes reduced in all the constructed sequences

are residuals of redexes in the sets F̂ or F̃ . If we mark all redexes in these two sets,

then the reduction sequences would be developments. Therefore by lemma 5.1.10 the

length of such reductions is limited, so the construction will eventually terminate.

Confluence of the calculus relation of the marked term calculus immediately

follows from the strip lemma 5.1.17 (see [Bar84], Chapter 11 for the proof). The

confluence of the unmarked calculus follows by erasing the marks.

Theorem 5.1.18 (Confluence of the Marked T ). If M ′
1 −−→

∗
T M ′

2) and M ′
1 −−→

∗
T

M ′
3, then there exists M ′

4 such that M
′
2 −−→

∗
T M ′

4, M
′
3 −−→

∗
T M ′

4.



97

5.1.5 Class Preservation and Standardization in T

In order to prove computational soundness it remains to show class preservation and

standardization. Before we prove these two properties, we show some technical facts

needed for the proofs.

Lemma 5.1.19. Let M ◦−(C,R1)−−−→T N , where N = R2 is a redex in T . Then N =

(λx.N1) @ V and M = (λx.A{R1}) @ V or M = (λx.N1) @ λy.A{R1}.

Proof. Given M ◦−(C,R1)−−−→T N , where N = R2 is a redex, suppose N = c1 op c2. By

definition of a non-evaluation step M = C{R1} ◦−
(C,R1)−−−→T C{Q1} = N , where C is a

non-evaluation context, i.e., in particular C 6= 2, C 6= c1 op 2, and C 6= 2 op c2.

Therefore there are no possibilities for C in this case.

Now suppose N = (λx.N1) @ V . Again we have M = C{R1} ◦−
(C,R1)−−−→T

C{Q1} = N , where C is a non-evaluation context, i.e. C 6= 2, C 6= 2 @ V , and C 6=

(λx.N1) @ 2. The remaining cases are C = (λx.A) @ V and C = (λx.N1) @ λy.A,

and the claim of the lemma is shown.

Lemma 5.1.20. Let M ◦−(C,R1)−−−→T N . Then M = E{R} if and only if N = E
′{R′}.

If M = E{R}, N = E′{R′}, then (E′, R′) = (E, R)/(C, R1) (recall that the notation

implies that (E′, R′) is the only residual of (E, R)).

Proof. The proof is by induction on the structure of an evaluation context. We want

to show that M = E{R} if and only if N = E
′{R′} and E and E

′ are of the same

shape (see 5 cases of definition of an evaluation context in T on figure 2.3).

Base case. Suppose M = E{R} and E = 2. Then M = c1 op c2 or M =

λx.M1 @ V . However, since M ◦−−→T N , it can not be the case that M = c1 op c2.

Therefore M = (λx.M1) @ V . The redex R1 reduced by the non-evaluation step may



98

occur either in M1 or in V , i.e. there are the following two cases:

M = (λx.A{R1, x, . . . , x}) @ V ◦−(C,R1)−−−→T (λx.A{Q1, x, . . . , x}) @ V = N

M = (λx.A{x, . . . , x}) @ λy.B{R1} ◦−
(C,R1)−−−→T (λx.A{x, . . . , x}) @ λy.B{Q1} = N

In both cases N = E′{R′1}, where E′ = 2.

Now suppose that N = E′{R′1}, E′ = 2. By lemma 5.1.19 N = λx.N1 @ V

and either M = (λx.A{R1}) @ V or M = (λx.N1) @ λy.A{R1}. In both cases M is

a redex, i.e. M = E{R}, where E = 2.

Induction step. As an inductive hypothesis suppose that the claim holds for

the evaluation subcontext of the context. We have 4 cases:

1. M = E{R2}, where E = E1 @ M1. Since M ◦−(C,R1)−−−→T N , we have two possi-

bilities: either C = C1 @ M1, in which case C1 is a non-evaluation context, or

C = (E1{R2}) @ C1. In the former case E1{R2} = C1{R1} ◦−
(C1,R1)−−−−→T C1{Q1},

and by inductive hypothesis (since E1 is a subcontext of E) we have C1{Q1} =

E′1{R
′
2}, and hence N = E′{R′2}, where E′ = E′1 @ M1. In the latter case

(E1{R2}) @ C1{R1} ◦−
(C,R1)−−−→T (E1{R2}) @ C1{Q1}, i.e. N = E′{R2}, where

E′ = E1 @ C1{Q1}.

Now suppose that N = E′{R′2}, where E′ = E′1 @ N1. Since M ◦−
(C,R1)−−−→T N , we

have two cases:

• M = (C1{R1}) @ N1, where C1 is a non-evaluation context. Then C1{R1}

◦−(C1,R1)−−−−→T C1{Q1} = E′1{R
′
2}, and by the inductive hypothesis C1{R1} =

E1{R2}, so M = (E1{R2}) @ N1.

• M = (E′1{R
′
2}) @ C1{R1}, where C1 may be an evaluation or a non-

evaluation context. In this case M = E{R′2}, where E = E′1 @ C1{R1},

i.e. E is of the same shape as E′.
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2. Suppose M = (λx.M1) @ E{R2}. Then either M = (λx.C1{R1}) @ E{R2}

or M = (λx.M1) @ C1{R1}, in the latter case C1 is a non-evaluation context.

Similarly to the first part of case 1 above, we get N = (λx.N1) @ E{R2} or

N = (λx.M1) @ E
′
1{R

′
2}.

Now suppose N = (λx.N1) @ E′{R′2}. Then, as in the previous case, ei-

ther M = (λx.N1) @ C1{R1}, where C1 is a non-evaluation context, or M =

C1{R1} @ E′{R′2}. In the former case M = (λx.N1) @ E{R2} by inductive

hypothesis, analogously to case 1. In the latter case note that C1 6= 2, since

otherwise C = 2 @ N2 is an evaluation context (N2 = E′{R′2}). Therefore

M = (λx.C′′1{R1}) @ E
′{R′2} for some C

′′
1, and the claim of the lemma holds.

3. The case of the evaluation context of the form E op M is analogous to case 1.

4. The case of the evaluation context of the form c op E is analogous to case 2.

Lemma 5.1.21 (Class Preservation). If M ◦−(C,R1)−−−→T N , then ClT (M) = ClT (N).

Proof. The cases of classes const(c),var, and abs are straightforward. Below we

show the case stuck(l):

Suppose ClT (M) = stuck(l). By induction on the structure of M we show

that ClT (N) = stuck(l).

Base case: the case when M = l is impossible, since there is no N such that

M ◦−−→T N . Instead we use the following as base cases for M : l @ M1, (λx.M1) @ l,

l op M1, c op l. If M = l @ M1, then M ◦−−→T N = l @ N1, where M1 ◦−−→T N1,

i.e. ClT (N) = stuck(l). Similarly, N = (λx.N1) @ l, where M1 −−→T N1 (i.e.
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λx.M1 ◦−−→T λx.N1) if M = (λx.M1) @ l, N = l op N1, where M1 ◦−−→T N1 if

M = l op M1, and it may not be the case that M ◦−−→T N if M = c op l.

As the inductive hypothesis assume that if M1 = E{l} is a subterm of M and

M1 ◦−−→T N1, then N1 = E
′{l}. Suppose M = (E{l}) @ M ′ ◦−−→T N . If the reduction

step is (E{l}) @ M ′ ◦−−→T N ′ @ M ′, then by inductive hypothesis N ′ = E′{l},

so ClT (N) = ClT ((E
′{l}) @ M ′) = stuck(l). If the step is (E{l}) @ M ′ ◦−−→T

(E{l}) @ N ′, then ClT (N) = stuck(l). The cases M = (λx.M ′) @ E{l}, M =

E{l} op c, and M = c op E{l} are analogous.

Now suppose ClT (N) = stuck(l), and show that ClT (M) = stuck(l).

Base case: as above, the case when N = l is impossible, since there is no

M such that M ◦−−→T l. Therefore we consider the following base cases for N :

N = l @ M1, N = (λx.M1) @ l, N = l op M1. The case N = c op l is impossible. In

all three base cases it easily follows that M has the same shape as N , i.e. ClT (M) =

ClT (N) = stuck(l).

The induction step is similar to the one above. We assume that if N1 = E{l}

is a subterm of N and M1 ◦−−→T N1, then M1 = E′{l}. By considering all cases of N

we show that ClT (M) = stuck(l) for every N .

It follows from lemma 5.1.20 that ClT (M) = evaluatable if and only if

ClT (N) = evaluatable. This concludes the proof since the remaining class error is

defined as the class of terms that do not belong to any of the above classes.

Our proof of standardization of developments follows the approach described

in section 4.3, i.e. we show property 4.2.18 (replacing a non-standard pair in develop-

ments), and since we have shown the boundedness of developments (lemma 5.1.10),

standardization of developments follows by lemma 4.3.3. The following lemma im-

plies property 4.2.18 of T .
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Lemma 5.1.22. If M1 ◦−
(C,R1)−−−→ M2 =

(E′,R′
2
)

===⇒ M3. Then there exists M4 such that

M1 =
(E,R2)
===⇒M4 −

(C,R1)/(E,R2)−−−−−−−→
∗
M3, where (E′, R′2) = (E, R2)/(C, R1).

Proof. The proof is by induction on the structure of the evaluation context E′, simi-

larly to the proof of lemma 5.1.20 above.

Base case. Suppose M2 = E
′{R′2} and E

′ = 2. By lemma 5.1.19 M2 =

(λx.N) @ V , and either M1 = (λx.A{R1, x, . . . , x}) @ V (where A is an n + 1-hole

context if x occurs in N n times) or M1 = (λx.N) @ λy.B{R1}. Suppose R1 Ã Q1.

In the first case, we have:

(λx.A{R1, x, . . . , x}) @ V ==⇒T A{R1, V, . . . , V } −−→T A{Q1, V, . . . , V },

(λx.A{R1, x, . . . , x}) @ V ◦−−→T (λx.A{Q1, x, . . . , x}) @ V ==⇒T A{Q1, V, . . . , V }.

If we take M4 = A{R1, V, . . . , V }, then the claim of the lemma holds (note that the

redex reduced in A{R1, V, . . . , V } −−→T A{Q1, V, . . . , V } is the residual of the non-

evaluation redex w.r.t. the standard redex, i.e. the application). The second case is

similar. Let N = A{x, . . . , x}, where A is an n-hole context. Then

(λx.A{x, . . . , x}) @ λy.B{R1} ==⇒T A{λy.B{R1}, . . . , λy.B{R1}} −−→∗
T

A{λy.B{Q1}, . . . , λy.B{Q1}},

(λx.A{x, . . . , x}) @ λy.B{R1} ◦−−→T (λx.A{x, . . . , x}) @ λy.B{Q1} ==⇒T

A{λy.B{Q1}, . . . , λy.B{Q1}}.

We take M4 = A{λy.B{R1}, . . . , λy.B{R1}} and observe that all redexes reduced in

A{λy.B{R1}, . . . , λy.B{R1}} −−→
∗
T A{λy.B{Q1}, . . . , λy.B{Q1}} are residuals of the

non-evaluation redex.

Induction Step. As in the proof of lemma 5.1.19, we have 4 cases. We only

show one case, the rest is similar.
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• Suppose M2 = (E′1{R
′
2}) @ N ==⇒T (E′1{Q

′
2}) @ N = M3. Since M1 ◦−

(C,R1)−−−→T

M2, we have one of the following: either M1 = (C1{R1}) @ N , or M1 =

(E′1{R
′
2}) @ C1{R1}.

In the former case C1{R1} ◦−
(C1,R1)−−−−→T E′1{R

′
2}, hence by lemma 5.1.19 C1{R1} =

E1{R2}, and by the inductive hypothesis (E′1, R
′
2) = (E1, R2)/(C1, R1), and

there exists M ′
4 such that E1{R2} =

(E1 ,R2)
===⇒T M ′

4 −
(C,R1)/(E1 ,R2)−−−−−−−−→

∗

T E′1{Q
′
2}. There-

fore if we take M4 = M ′
4 @ N , then the claim of the lemma holds.

In the latter case M1 = (E′1{R
′
2}) @ C1{R1} ==⇒T (E′1{Q

′
2}) @ C1{R1} −−→T

(E′1{Q
′
2}) @ C1{Q1} = M3 (assuming R1 Ã Q1), and the claim holds.

Cases when M2 = (λx.N) @ E′1{R
′
2}, M2 = E′1{R

′
2} op N , and M2 = c1 op E′1{R

′
2},

are similar.

In all the cases we observe that (E′, R′2) = (E, R2)/(C, R1).

In the case when both given redexes in M1 are marked, lemma 5.1.22 implies

the following:

Corollary 5.1.23. If M ′
1 ◦−−→

dev
M ′

2 ==⇒
dev

M ′
3, then there exists M ′

4 such that M ′
1 ==⇒

dev

M ′
4 →

∗

dev
M ′

3.

Proof. Let (C, R1) be the redex reduced in the step M ′
1 ◦−−→

dev
M ′

2, and (E′, R′2) be the

redex reduced in M ′
2 ==⇒

dev
M ′

3. Then by lemma 5.1.22 there exists a redex (E, R2)

of M ′
1 such that for some M ′

4 M ′
1 =

(E,R2)
===⇒ M ′

4 −
(C,R1)/(E,R2)−−−−−−−→

∗

M ′
3. Since both given

steps are developments, i.e. they reduced marked redexes, it must be the case that

{(C, R1), (E, R2)} ⊆ marked(M ′
1). Then M ′

1 =
(E,R2)
===⇒ M ′

4 is a development step, and

the sequence M ′
4 −

(C,R1)/(E,R2)−−−−−−−→
∗
M ′

3 is a development sequence (since all the redexes

reduced in this sequence are marked).
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If marked(M ′
1) = {(C, R1), (E, R2)}, then marked(M ′

3) = ∅ and we are done.

Otherwise let (A, R) 6∈ {(C, R1), (E, R2)}, (A, R) ∈ marked(M ′
1). Let us consider a

term M ′′
1 such that |M ′

1| = |M
′′
1 | and marked(M ′′

1 ) = {(A, R)}. By lemma 5.1.22

M ′′
1 ◦−

(C,R1)−−−→
dev

M ′′
2 =

(E′,R′
2
)

===⇒
dev

M ′′
3 implies that there exists M ′′

4 such that M ′′
1 =

(E,R2)
===⇒ M ′′

4

−(C,R1)/(E,R2)−−−−−−−→
∗
M ′′

3 , where (E′, R′2) = (E, R2)/(C, R1). Since |M ′
1| = |M

′′
1 | and the

reduction from M ′′
1 to M ′′

4 reduces the same redex as the reduction from M ′
1 to M ′

4,

we have |M ′
4| = |M

′′
4 |.

By lemma 5.1.15 M ′′
1 ◦−

(C,R1)−−−→
dev

M ′′
2 and M ′′

1 , {(A, R)}) =
(E,R2)
===⇒ M ′′

4 imply that

there exists M ′′′
3 such that M ′′

2 −
(E,R2)/(C,R1)−−−−−−−→

∗
M ′′′

3 and M ′′
4 −

(C,R1)/(E,R2)−−−−−−−→
∗
M ′′′

3 . Since

(E′, R′2) = (E, R2)/(C, R1), we get |M ′′′
3 | = M ′

3 = |M ′′
3 |. By lemma 5.1.15 all re-

ductions −(C,R1)/(E,R2)−−−−−−−→
∗
lead to the same result, therefore we may assume that the

reductions M ′
4 −

(C,R1)/(E,R2)−−−−−−−→
∗
M ′

3 above and M ′′
4 −

(C,R1)/(E,R2)−−−−−−−→
∗
M ′′′

3 .

Now, when we have shown the claim for one redex, we can show the general

claim by induction on the number of redexes in marked(M ′
1), with the term M ′

1 such

that marked(M ′
1) = {(C, R1), (E, R2)}) as the base case. The induction is similar to

that in the proof of the parallel moves lemma 5.1.16 and uses definition 4.2.7 to join

sets of residuals.

Now we can show standardization of developments for T :

Lemma 5.1.24 (Standardization of Developments in T ). Given M ′
1 →

∗

dev
M ′

2,

there exists M ′ such that M ′
1 ==⇒∗

dev
M ′ ◦−−→∗

dev
M ′

2.

Proof. We have shown that the calculus T has boundedness of developments prop-

erty 4.2.14 (lemma 5.1.10). Corollary 5.1.23 above states that T has property 4.2.18.

Therefore by lemma 4.3.3 it has standardization of developments.

Another property implied by lemma 5.1.22 is the elementary lift diagram

(property 4.6.1).
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Lemma 5.1.25 (Elementary Lift Diagram). If M ′
1 ◦−

(C,R)−−−→
cd

M ′
2 ==⇒M ′

4, then there

exists M ′
3 such that M

′
1 =

(E,R′)
===⇒M ′

3 −
(C,R)/(E,R′)−−−−−−−→

∗

cd
M ′

4.

Proof. Follows from lemma 5.1.22 in the case when only the redex (C, R) is marked.

Finally, we get the following result:

Theorem 5.1.26 (Standardization). If M ′ −−→∗
T N ′, then there exists M ′

1 such

that M ′ ==⇒∗
T M ′

1 ◦−−→
∗
T N ′.

Proof. T has the lift property 4.8.1 by theorem 4.8.4, lemma 5.1.25, and lemma 5.1.24.

By results of section 3.4.3 it has standardization.

5.1.6 Computational Soundness of T

Theorem 5.1.27 (Computational Soundness of T ). For any M,N ∈ TermT

if M ↔T N , then OutcomeT (M) = OutcomeT (N).

Proof. The marked calculus associated with T has confluence (theorem 5.1.18), class

preservation (lemma 5.1.21), and standardization (theorem 5.1.26). By lemma 4.8.3

standardization (i.e. lift) property holds for terms of T without marked redexes.

Similarly confluence for marked terms implies confluence for terms with no marked

redexes. Therefore by theorem 3.3.6 T is computationally sound.

5.2 Soundness of the Calculus of Records

This section shows computational soundness of the record calculus defined in sec-

tion 2.2.3. Unlike a more detailed presentation in [MT02], we do not distinguish

between visible and hidden labels, and do not introduce garbage collection rule.
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Module calculus (based on the calculus of records) identifies modules up to consis-

tent renaming of hidden components. The approach used in this ection is applicable

to modules with hidden labels, since all results shown on concrete records imme-

diately extend to α-equivalence classes of modules. This is due to the fact that a

reduction from one α-equivalence class to another exists if and only if such reduction

exists for all representatives of the first α-equivalence class. See [MT02] for details.

We use C to denote the calculus of records, and TermC, ContextC , and

EvalContextC to denote the sets of records, one-hole record contexts, and record

evaluation contexts, respectively.

5.2.1 Definitions

Sections 4.2 and 4.5 give axiomatic definitions of a set of residuals and of a γ-

development step, respectively. In this section we fill in calculus-specific details of

these definitions and show that they satisfy the requirements stated in the axiomatic

definitions.

Similarly to definition of residuals in the term calculus (Definition 5.1.3) we

define a set of residuals of a redex using multi-hole contexts and the greatest lower

bound of contexts. To be able to define filling of a context in a record, we assume that

labels in Label are ordered according to some total order < (for instance, label names

are ordered lexicographically). This allows us to specify the order in which holes of

a context are filled. Note that in this section we are dealing with particular records,

not with α-equivalence classes of records, and do not need to make a distinction

between visible and hidden labels.
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Definition 5.2.1. A multi-hole record context is defined as follows:

D = [l1 7→ C1, . . . , ln 7→ Cn],

where Ci are multi-hole term contexts.

Suppose that l1 < l2 < · · · < ln, and H(Ci) = mi for 1 ≤ i ≤ n. Then for a

context D given above by definition

D{A1,1, . . . ,A1,m1
, . . . ,An,1, . . . ,Amn} =

[l1 7→ C1{A1,1, . . . ,A1,m1
}, . . . , ln 7→ Cn{An,1, . . . ,Amn}].

Recall that Ai,j are multi-hole term contexts.

Definition 5.2.2. The greatest lower bound of two record contexts is defined as

glb([l1 7→ C1, . . . , ln 7→ Cn], [l1 7→ C′1, . . . , ln 7→ C′n]) =

[l1 7→ glb(C1,C
′
1), . . . , ln 7→ glb(Cn,C

′
n)],

provided glb(Ci,C
′
i) is defined for all i such that 1 ≤ i ≤ n, otherwise it is undefined.

Note that for glb to be defined, the two record contexts must have the same labels

of all components.

As for the term calculus, for n > 2

glb(D1,D2, . . . ,Dn) = glb(glb(D1,D2),D3, . . . ,Dn).

Definition 5.2.3 (Projection). If D = [l1 7→ M1, . . . , ln 7→ Mn], then Mi is called

a projection of D on a label li, denoted by D ↓ li.



107

If D = [l1 7→ C1, . . . , ln 7→ Cn], then Ci is called a projection of D on a label

li, denoted by D ↓ li.

Definition 5.2.4. Let (D, R), where D = [li
k
7→
i=1

Mi, lk 7→ C, li
n
7→

i=k+1
Mi], be a record

redex. Then lk is called the binding label of (D, R), and (C, R) is called the term

projection of the redex (D, R) (denoted (D, R) ↓). Note that C = D ↓ lk.

If F = {(D1, R1), . . . , (Dn, Rn)}, then by definition

F ↓ l = {(Di, Ri) | (Di, Ri) ∈ F, and l is the binding label of (Di, Ri)}.

If D′ is a record in the marked version of C, then D′ ↓ l is a marked term M ′

such that |D′| ↓ l = |M ′| and marked(M ′) = marked(D′) ↓ l.

The following definition of independent subterms and redexes in the record

calculus is analogous to definition 5.1.11 of independent subterms and redexes in

the term calculus. Note that the “term” part of a record subterm is a term of the

calculus T , not C.

Definition 5.2.5. 1. A T -subterm of a record D is a pair (D,M), where D ∈

ContextC, M ∈ TermT , and D{M} = D.

2. Two T -subterms (D1,M1), (D2,M2) of a record D are called independent if

either their binding labels are different, or (D1 ↓ l,M1) and (D2 ↓ l,M2) are

independent, where l is the binding label of the two T -subterms.

3. Two redexes (D1, R1) and (D2, R2) of a record D are independent if they are

independent as T -subterms.
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Definition 5.2.6 (Self-referential redex). A redex (D, l) is called a self-referential

redex if l is its binding label. In this case D ↓ l is called the self-referential context of

the redex.

Definition 5.2.7. Let D = D1{R1}, where (D1, R1) is a redex, and assume that

D −(D2,R2)−−−−→ D′. A set of residuals of (D1, R1) w.r.t. the reduction −(D2,R2)−−−−→ denoted

(D1, R1)/(D2, R2) is defined as follows: let D3 = glb(D1,D2) and assume (without

loss of generality) that D = D3{R1, R2} in the case when D3 ∈ Context
2
C, i.e. that

R1, R2 fill the two holes of D3 in this order, and R2 Ã Q2 if R2 ∈ TermRedex, then

1. If (D, l) is a self-referential redex and D{l} ↓ l = A{l}, then (D, l)/(D, l) =

{(D{A}, l)}. Otherwise (D, R)/(D, R) = ∅.

2. If D3 ∈ Context
2
C and R2 ∈ TermRedex, then we define (D1, R1)/(D2, R2) =

{(D3{2, Q2}, R1)}. The case when the reduction reduces a term redex, and

the other redex (either a term or a substitution redex) is independent from the

redex being reduced.

3. If D3 ∈ Context
2
C, R2 = l, and D2 ↓ l = V ∈ ValueT , then (D1, R1)/(D2, R2) =

{(D3{2, V }, R1), (D3{R1,A}, R1)} if V = A{R1} for A = D1 ↓ l, otherwise

(D1, R1)/(D2, R2) = {(D3{2, V }, R1)}. I.e. if the reduction step reduces a sub-

stitution redex, then a given redex has two residuals if it has been duplicated

by the substitution, and one otherwise.

4. In this case a given redex is contained in a term redex being reduced. Note

that a term redex of the form c1 op c2 can not contain another redex, so the

term redex can only be an application. If D3 ∈ Context
1
C and R2 = A{R1},

then R2 ∈ TermRedex, and:
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• If R2 = λx.Cn{R1, x, . . . , x} @ V , then by definition (D1, R1)/(D2, R2) =

{(D2{C
n{2, V, . . . , V }}, R1[x := V ])}. This case defines the residual of a

redex inside the abstraction when an application is reduced.

• If R2 = λx.Cn{x, . . . , x} @ V , V = A{R1}, then (D1, R1)/(D2, R2) =

{(D2{B
1
i }, R1) | 1 ≤ i ≤ n}, where B1

i = Cn{V, . . . , V,2i, V . . . , V }, so

that 2 fills the i-th hole of C
n. In this case a given redex is contained in

the operand part of an application.

5. If D3 ∈ Context
1
C and R1 = A{R2}, then R1 ∈ TermRedex, and we define

(D1, R1)/(D2, R2) = {(D1,A{Q2})} ifR2 ∈ TermRedex, and (D1, R1)/(D2, R2) =

{(D1,A{V })} if R2 = l and D2 ↓ l = V . In this case R2 is contained in R1, so

R1 has one residual.

Note that the definition exhausts all possible cases of the kinds and mutual

positions of (D1, R1) and (D2, R2).

Lemma 5.2.8. A set of residuals of a redex (D1, R1) w.r.t. a redex (D2, R2) defined

in 5.2.7 satisfies the axiomatic definition 4.2.5.

Proof. We need to check, firstly, that every element of a set (D1, R1)/(D2, R2) defined

in 5.2.7 is a record redex, and, secondly, that the set it satisfies the requirements of

axiomatic definition 4.2.5. This can be easily shown by case analysis.

As for the term calculus, we generalize the notion of a set of residuals to a

set of redexes (rather than a single redex) and to a sequence of reduction steps. The

precise definitions and notations are given in section 4.2.
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5.2.2 γ-developments in Calculus of Records

According to the framework described in section 4.5, we define γ-developments for C.

γ-developments are bounded, and enjoy the weak standardization property (defini-

tion 4.5.7). As shown in section 4.8, this is sufficient for the proofs of lift and project

to go through.

In order to define a γ-development step, we first define a non-restricted γ-

development step, and then restrict it to particular kinds of records with marked re-

dex, namely, those that originate from a record with a single marked non-evaluation

redex. In this case the γ-development reduction has the desired properties, s.a.

boundedness and weak standardization.

We use D′ to range over records in the marked version of the calculus C.

We define the reductions on marked records, erasure of the marks, set marked(D′),

developments, and complete developments in the usual way (see section 4.2).

Definition 5.2.9. • Let F1 = marked(D′
1), F2 = marked(D′

2). A non-restricted

γ-development step of D′
1 is a reduction D′

1

(D,R)
→
n−γ

D′
2 such that |D′

1| −
(D,R)−−−→ |D′2|,

(D, R) ∈ F1, and

– if R is a term redex, then F2 = F1/(D, R);

– ifR = l is a substitution redex, then F2 = F1/(D, R)−
⋃

(D̃,l)∈F̃l

{(D{D̃ ↓ l}, l)},

where F̃l ⊂ F1 is the set of marked self-referential redexes of D′
1 whose

binding label is l;

– or D′
1

(D,R)
→
n−γ

D′
2, where |D

′
1| = |D

′
2|, (D, R) ∈ F1, F2 = F1 − {(D, R)}, and

(D, R) is not self-referential. In this case we say that the redex (D, R) gets

erased.

Let =
(G,R)
==⇒
n−γ

denote a step
(G,R)
→
n−γ

, where (G, R) is an evaluation redex. If D′
1

(D,R)
→
n−γ
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D′
2, then D′

1 =
(D,R)
==⇒
n−γ

D′
2, regardless of whether the redex (D, R) is an evaluation

redex, i.e. a step erasing a redex is always considered an evaluation step. If

D′
1

(D,R)
→
n−γ

D′
2, but not D

′
1 =

(D,R)
==⇒
n−γ

D′
2, then D′

1 ◦−
(D,R)−−−→
n−γ

D′
2.

• A domain of γ-development dom(γ) is defined as follows: D′ ∈ dom(γ) if

– either there exists a record D′
0 and a non-evaluation redex (D, R) ∈

marked(D′
0) such that D′

0 ==⇒∗

∪′
D′′, where ==⇒

∪′
is either a ==⇒ step or a

==⇒
n−γ

step, |D′| = |D′′|, and marked(D′) ⊂ marked(D′′),

– or there exists D′′ ∈ dom(γ) such that D′′ →
n−γ

D′.

• If D′ ∈ dom(γ) and D′ →
n−γ

D′′, then we say that this reduction is a γ-

development step, and write D′ →
γ

D′′ (and respectively ==⇒
n−γ

and ◦−−→
n−γ

). We

also use the notation =
e
=⇒
γ

for a single erasing γ-development step and =
e
=⇒

∗

γ
for a

sequence of such steps.

Note that for a term redex or for a non-self-referential redex a γ-development

step
(D,R)
→
γ

is just a regular development step in the marked calculus of records. This

fact is used in further proofs, so we formulate it as a lemma.

Lemma 5.2.10. If (D, R) is not a self-referential substitution redex, then D ′
1

(D,R)
→
γ

D′
2

implies that marked(D′
2) = marked(D′

1)/(D, R), i.e. D
′
1

(D,R)
→
dev

D′
2.

Proof. By definition 5.2.9 ifR is a term redex, then marked(D′
2) = marked(D′

1)/(D, R).

If R = l is a substitution redex and it is not self-referential, then the binding label of

(D, R) is not l, so ˜marked(D′
1)l = ∅, and therefore marked(D′

2) = marked(D′
1)/(D, R).
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The difference between a marked reduction step and a γ-development step is

as follows: if (D, l) is a self-referential redex substituted for a marked label l, then,

even though by the extended calculus reduction a redex duplication takes place, one

of the residuals is not included in the set of residuals by the →
γ

step. For instance:

[l 7→ λx.l, l′ 7→ l] ==⇒
γ

[l 7→ λx.l, l′ 7→ λx.l].

The result of the substitution of λx.l for the marked label in the second component

is λx.l (i.e. the label is not marked). The self-referential redex has a single residual

– itself. In contrast, the extended calculus reduction preserves the marking of the

label:

[l 7→ λx.l, l′ 7→ l] ==⇒ [l 7→ λx.l, l′ 7→ λx.l].

In this case the self-referential redex has two residuals.

Lemma 5.2.11. A reduction D′
1 →

γ
D′

2 defined in 5.2.9 satisfies the requirements of

the axiomatic definition 4.5.1.

Proof. By definition 5.2.9 for all non-evaluation redexes (D, R) if marked(D′
1) =

{(D, R)}), then D′
1 ∈ dom(γ). This satisfies part 1 of definition 4.5.1.

Part 2 of definition 4.5.1 is satisfied by definition of erasing γ-development

step D′
1 =

(D,R)
==⇒
γ

D′
2.

Part 3 holds due to the definition of dom(γ) in 5.2.9.

Part 4 of definition 4.5.1 consists of 4 subparts:

1. If D′
1

(D,R)
→
γ

D′
2, then |D

′
1| −

(D,R)−−−→ |D′2|: explicitly stated in definition 5.2.9.

2. If D′
1

(D,R)
→
γ

D′
2, then (D, R) ∈ marked(D′

1): also explicitly stated in defini-

tion 5.2.9.
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3. If D′
1 −

(D,R)−−−→ D′3, then marked(D′
2) ⊆ marked(D′

3): the set marked(D′
2) is

marked(D′
1)/(D, R) for a term redex and marked(D′

1)/(D, R) with (possibly)

some redexes excluded for a substitution redex.

4. (D, R)/(D, R) ∩marked(D′
2) = ∅: if (D, R) is not a self-referential redex, then

(D, R)/(D, R) = ∅. If (D, l) is a self-referential redex, then the reduction is

[l 7→ λx.C{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, . . . ],

so (D, l)/(D, l) is not included into the set of marked redexes in the resulting

record.

Note that if D′
1 ∈ dom(γ) and D′

1

(D,R)
→
n−γ

D′
2, then D′

1

(D,R)
→
γ

D′
2, and therefore if

D′
0 ==⇒∗

∪′
D′

2 and marked(D′
0) = {(D, R)}, then D′

0 ==⇒∗

∪
D′

2 (see 4.5.4 for definition of

==⇒
∪
). In the rest of this work we use the notation ==⇒∗

∪
in this situation.

It easily follows from definition 5.2.9 that D′ ∈ dom(γ) if and only if there

exist a record D′
0 such that marked(D′

0) = {(D, R)} and D′
0 ==⇒

∗

∪
D′

1 −−→
∗

γ
D′.

Definition 5.2.12. If marked(D′
0) = {(D, R)} and D′

0 ==⇒∗

∪
D′

1 −−→
∗

γ
D′, then (D, R)

is called a starting redex of D′.

A starting redex of D′ is not uniquely defined, but this ambiguity does not

affect our proofs.

Let us consider three kinds of record redexes: a term redex, a self-referential

substitution redex (see definition 5.2.6), and a substitution redex which is not self-

referential.

Lemma 5.2.13. Let (D, R) be a starting redex of D′ and let F = marked(D′).
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• If (D, R) is a term redex, then every (D′, R′) ∈ F is a term redex,

• If (D, R) = (D, l) is a non-self-referential substitution redex, then every redex

in F is a non-self-referential substitution redex of the form (D′, l).

• If (D, R) = (D, l) is a self-referential substitution redex, then there is no more

than one self-referential redex (D̃, l) ∈ F , and all other redexes in F (if any)

are of the form (D′, l).

Proof. Firstly we note that a step =
(D,R)
==⇒
γ

does not produce new marked redexes, only

removes already existing ones. Therefore we do not need to consider this step in the

rest of the proof.

The first claim of the lemma easily follows from the observation that if (D, R)

is a term redex, then for every redex (D1, R1) if (D′, R′) ∈ (D, R)/(D1, R1), then

(D′, R′) is a term redex (see definition 5.2.7). Therefore all residuals of a term redex

w.r.t. any reduction sequence are term redexes.

Similarly, it is clear that if a redex (D, l) is a substitution redex, and (D′, R′) ∈

(D, l)/(D1, R1), then R′ = l, i.e. all residuals of a substitution redex with a label l

are substitution redexes with the same label l. However, this is not enough to prove

the second and the third claims of the lemma, since, in general, a residual of a

self-referential redex may be not self-referential, and vice versa.

Let D′
0 ==⇒∗

∪
D′

1 −−→
∗

γ
D′

2, where marked(D′
0) = {(D, l)}. Let F1 = marked(D′

1)

and F2 = marked(D′
2). Suppose that (D, l) is a non-self-referential substitution

redex. We show that F2 has only non-self-referential redexes by induction on the

total number of steps in the above sequence. The base case of 0 steps satisfies the

claim, since the pair D′
0 has only non-self-referential marked substitution redexes.
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Part 1. Suppose D′
0 ==⇒∗

∪
D′

1 =
(G,R)
==⇒
∪

D′
2, and F1 (in the notations above)

has only non-self-referential redexes. We want to show that F2 also has only such

redexes. Note that D1 ↓ l = V ∈ ValueT by definition of a substitution redex. By

the inductive hypothesis there is no (D1, l) ∈ F1 such that the binding label of (D1, l)

is l, in other words V does not contain marked occurrences of l. By class preservation

property of T (lemma 5.1.21) V 6= E{R} for any term redex R and V 6= E{l′} for

any l′. Therefore the evaluation step occurs in a component of D1 other than the

one bound to l. Let l̃ denote the label of this component.

There are several possibilities for a reduction step =
(G,R)
==⇒
∪

: it may be a ==⇒,

which either reduces an unmarked redex (which may be a term or a substitution

redex), or a marked redex (i.e. a redex (D′, l) ∈ F1). Alternatively, =
(G,R)
==⇒
∪

may be

a ==⇒
γ

step. However, in all these cases we observe the following: by considering the

cases in definition of a residual (definition 5.2.7) we can see that the only way a

self-referential marked redex may appear in the component bound to l in D′
2 is if

a marked occurrence of l is copied to this component by a substitution. However,

since the reduction step happens in a different component of D1 (a component with

a label l̃), a self-referential redex may not be created.

Part 2. Similarly, suppose that D′
0 ==⇒

∗

∪
D′ −−→∗

γ
D′

1

(D1,l)
→
γ

D′
2, where F1 contains

only non-self-referential redexes (note that the step
(D1,l)
→
γ

is a part of a development

sequence, therefore it reduces a substitution redex with a label l). By the inductive

hypothesis F1 does not contain self-referential redexes, so the binding label of (D1, l)

is not l. Therefore reducing this redex can not create a marked occurrence of l in

the component bound to l, so no self-referential redexes occur in F2. This concludes

the proof of the second claim of the lemma.

Now suppose D′
0 ==⇒∗

∪
D′

1,−−→
∗

γ
D′

2, (D, l) is a self-referential redex, i.e. D0 ↓
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l = C{l}, where C is a non-evaluation context, and D ↓ l = C. We prove this claim

by induction, similarly to the previous claim. Base case: D′
0 satisfies the claim, since

{(D, l)} contains just one self-referential redex.

Part 1. Suppose that D′
0 ==⇒∗

∪
D′

1,=
(G,R)
==⇒
∪

D′
2, and F1 contains no more than

one self-referential redex. We want to show that F2 contains no more than one self-

referential redex. If F1 does not contain a self-referential redex, then by the same

argument as in Part 1 of the proof of the second claim we show that F2 does not have

a self-referential redex. Now suppose that F1 has a self-referential redex. Since the

component bound to l is a value, the evaluation step occurs in a different component

(let l̃ denote its label). There are three cases of evaluation step ==⇒ reducing an

unmarked redex. We show marked redexes by underlining. Note that C is a non-

evaluation context.

Term redex:

[l 7→ C{l}, l̃ 7→ E{R}, . . . ] ==⇒ [l 7→ C{l}, l̃ 7→ E{Q}, . . . ],

Substitution redexes:

[l 7→ C{l}, l̃ 7→ E{l1}, l1 7→ V ′, . . . ] ==⇒ [l 7→ C{l}, l̃ 7→ E{V ′}, l1 7→ V ′, . . . ],

[l 7→ C{l}, l̃ 7→ E{l}, . . . ] ==⇒ [l 7→ C{l}, l̃ 7→ E{C{l}}, . . . ].

No new self-referential redexes has been created as the result of the evaluation step.

Note that in the last case, even though the self-referential redex has been duplicated,

the second copy is not self-referential, since it does not occur in the component bound

to l.

If the =
(G,R)
==⇒
∪

step is a ==⇒ step reducing a marked redex, we have the only

possibility (note that a marked redex must be a substitution redex with the label l,
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and may not occur in a component bound to l since D1 ↓ l ∈ ValueT ):

[l 7→ C{l}, l̃ 7→ E{l}, . . . ] ==⇒ [l 7→ C{l}, l̃ 7→ E{C{l}}].

Again, no other self-referential redexes has been created in the component bound to

l.

The case when the =
(G,R)
==⇒
∪

step is a ==⇒
γ

step is very similar to the previous

one, with the difference that the occurrence of l in the component bound to l̃ is not

marked in the resulting record:

[l 7→ C{l}, l̃ 7→ E{l}, . . . ] ==⇒
γ

[l 7→ C{l}, l̃ 7→ E{C{l}}].

The difference, however, does not affect the fact that the resulting record still has

just one self-referential redex.

Part 2. Suppose that D′
0 ==⇒

∗

∪
D′ −−→∗

γ
D′

1

(D1,l)
→
γ

D′
2, where F1 contains no more

than one self-referential redex (recall that F1 = marked(D′
1), F2 = marked(D′

2)). If

F1 does not contain any such redexes, then by the same argument as in part 2 of the

proof of the second claim we show that F2 does not contain self-referential redexes

as well. Suppose F1 has one self-referential redex. We have one of the following two

cases:

Case 1: [l 7→ C{l}, l̃ 7→ A{l}, . . . ] →
γ

[l 7→ C{l}, l̃ 7→ A{C{l}}, . . . ],

Case 2: [l 7→ C{l}, . . . ] ◦−−→
γ

[l 7→ C{C{l}}, . . . ].

In the first case a marked occurrence of l is reduced in a component other

than the one bound to l. Then the original self-referential redex is still marked, and

therefore F2 still has one self-referential redex. Note that in the first case A may or
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may not be an evaluation context, so the reduction may or may not be an evaluation

step. In the second case the self-referential redex is reduced (the reduction step

must be a non-evaluation step, since l occurs in a non-evaluation context). Since

the step is a γ-development step, l is not marked after the substitution. By the

inductive hypothesis D′
1 has just one self-referential redex, so there are no other

labelled occurrences of l in C{l}. Therefore there are no self-referential redexes in

F2. Combining the two cases, we conclude that F2 has one or no self-referential

redexes. This proves the third claim of the lemma.

Lemma 5.2.10 suggests that in the case of a term redex or a non-self-referential

substitution redex the proofs of properties implying lift and project may be simpli-

fied, since γ-developments of these redexes are just extended calculus reductions.

Lemma 5.2.13 guarantees that these two cases are indeed separate from the case of

a self-referential redex (and from each other), i.e. by starting from a single non-

evaluation redex, which is either a term redex, or a non-self-referential substitution

redex, in a lift or project diagram one can get only developments of redexes of the

same kind. This allows us to consider the first two (simpler) cases of redexes sepa-

rately from the third (i.e. self-referential redex) in the proofs below.

5.2.3 Boundedness of γ-developments

In order to prove lift and project (4.8.1 and 4.8.2 respectively) for the record calculus

C, we need to show properties required by theorems 4.8.4 and 4.8.5. We also prove

boundedness of γ-developments and the diamond property of the evaluation relation

==⇒, which implies its confluence. Recall that confluence of ==⇒ is used in the proof

of computational soundness from lift and project (see theorem 3.4.5).
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Lemma 5.2.14 (Boundedness of γ-developments). Let (D, R) be a starting

redex of D′. There exists a development D′ −−→∗

γ
D′′ of the maximal length.

Proof. Let F = marked(D′). We have two cases:

Case 1. (D, R) is a term redex. By lemma 5.2.13 all redexes in F are term

redexes.

Let D′ = [li
m
7→
i=1

Mi], and suppose that for every record component Mi we have

defined a weighting Ii according to definition 5.1.4. Then we define a weighting of

the record to be a tuple I = (I1, . . . , Im). We extend a reduction of marked records

to a reduction of pairs D′, I) analogously to definition 5.1.8.

We say that a weighting I = (I1, . . . , Im) of a record D′ is decreasing if

I1, . . . , Im are decreasing on D′ ↓ l1, . . .D
′ ↓ lm respectively. Let || (D, I) ||=

∑m
i=1 ||

(D ↓ li, Ii) ||.

Suppose (D′
1, I1)

(D̃,R̃)
→
dev

(D′
2, I2), and I1 is decreasing. We want to show that:

1. I2 is decreasing on D′
2,

2. || (D′
1, I1) ||>|| (D

′
2, I

′
2) ||.

Let lk be the binding label of (D̃, R̃), and let (C̃, R̃) = (D̃, R̃) ↓ lk. Then

D′
1 ↓ lk

(C̃,R̃)
→
dev

D′
2 ↓ lk.

Taking into account the weighting of D′
1, we can consider the term reduction on pairs

(recall definition 5.1.8):

(D′
1 ↓ lk, I1k)

(C̃,R̃)
→
dev

(D′
2 ↓ lk, I2k),

where I1k is the k-th component of the record weighting for I1, and I2k is the k-th
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component of the record weighting for I2.

Note that I1k is decreasing on D ↓ lk by definition of a decreasing record

weighting. Then by lemma 5.1.9 I2k is decreasing and || (D
′
1 ↓ lk, Ik) ||>|| (D

′
2 ↓ lk, I

′
k) ||.

Since the other components of the record are not changed by the reduction, the

new record weighting I2 = (I11, . . . , I1k−1, I2k, I1k+1, . . . , I1m) is decreasing, and ||

(D′
1, I1) ||>|| (D

′
2, I2) ||.

We also note the following important facts:

1. || (D, I) ||> 0 for any D, I (since the measure of every record component is

greater than 0),

2. for every D′ there exists a decreasing weighting I (such a weighting can be

obtained as a combination of decreasing weightings of all components, which

exist by lemma 5.1.7)

Combining all the properties of decreasing record weightings that we have

shown, we can apply the same argument as in lemma 5.1.10 to show that all record

developments are bounded when (D, R) is a term redex.

Note that the erasing γ-development step =
(D,R)
==⇒
γ

also reduces the measure,

since it “erases” the marking of a redex.

Case 2. (D, R) = (D, l) is a substitution redex. By lemma 5.2.13 all redexes

in F are substitution redexes with the label l, and at most one of them is a self-

referential redex.

We define a measure2 || D′ || to be the number of elements in marked(D′).

Note that since every (D, R) is a record redex in D′, the measure || D′ || is finite for

every D′ (every record has a finite number of redexes). Clearly || D′ ||≥ 0 for any

D′.

2This measure is independent from the measure defined in case 1 of the proof.
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By definition 5.2.7 of a residual and 5.2.9 of γ-development every substitution

step reduces the number of marked redexes by one. Similarly to the case of the term

redex, an erasing step =
(D,l)
==⇒
γ

also reduces the number of marked redexes, and therefore

the measure, by one. Therefore the γ-developments are bounded in C.

5.2.4 Confluence and γ-confluence of ==⇒C

Lemma 5.2.15. The evaluation relation of the calculus C satisfies the following

property: if D1 =
(G1,R1)
====⇒ D2 and D1 =

(G2,R2)
====⇒ D3, then there exists D4 such that

D2 =
(G2,R2)/(G1,R1)
========⇒ D4 and D3 =

(G1,R1)/(G2,R2)
========⇒ D4, provided (G1, R1) 6= (G2, R2).

Proof. The proof is by cases on pairs of redexes (G1, R1) and (G2, R2). Note that the

two redexes occur in two different components of D1, since they are both evaluation

redexes, and therefore are independent.

Note that, as the lemma suggests, each of the sets (G1, R1)/(G2, R2) and

(G2, R2)/(G1, R1) consists of just a single redex.

Lemma 5.2.15 implies two important properties of ==⇒C stated in lemma 5.2.16

and in lemma 5.2.17 below.

Lemma 5.2.16 (Confluence of ==⇒C). The evaluation relation ==⇒C of the calculus

C is confluent.

Proof. By lemma 5.2.15.

Lemma 5.2.17. If D ==⇒∗
C D

′ = Eval(D), then there is no infinite sequence D ==⇒C

D1 ==⇒C D2 . . . .

Proof. By lemma 5.2.15 if D =
S1

=⇒
∗

C D′ and D =
S2

=⇒
∗

C D′, then the two sequences S1

and S2 have the same number of steps. By confluence (lemma 5.2.16) for every Di
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such that D ==⇒∗
C Di there exists a sequence Di ==⇒

∗
C D

′, therefore there is no infinite

evaluation sequence starting from D.

The following results deal with the marked version of C.

Lemma 5.2.18. The evaluation relation of the calculus C has the following property:

if marked(D′
1) = {(G, R)}, D

′
1 =

(G,R)
==⇒
γ

D′
2, D

′
1 =

(G′,R′)
===⇒ D′

3, and (G, R) 6= (G′, R′), then

marked(D′
2) = ∅ and there exists D′

4 such that D′
2 =

(G′,R′)/(G,R)
=======⇒ D′

4, D
′
3 =

(G,R)/(G′,R′)
=======⇒

γ

D′
4, and marked(D

′
4) = ∅.

Proof. The two given reductions imply that |D′
1| =

(G,R)
==⇒ |D′

2| by definition 4.5.1, and

D1 =
(G′,R′)
===⇒ D3 by definition of a marked reduction. marked(D′

2) = ∅ by definition

of γ-development. By lemma 5.2.15 there exists D4 such that |D′
2| =

(G′,R′)/(G,R)
=======⇒ D4

and |D′
3| =

(G,R)/(G′,R′)
=======⇒ D4. Note that F = (G, R)/(G′, R′) contains just one redex

(by 5.2.15).

The redex (G, R) can not be a self-referential redex, since the step D′
1 =

(G,R)
==⇒
γ

D′
2 is an evaluation step, but a self-referential redex is a non-evaluation redex.

Therefore (lemma 5.2.13) the redex (G′′, R′′) = (G, R)/(G′, R′) also can not be self-

referential. Since no self-referential redexes are marked, by definition of a marked

calculus reduction the reduction step D3 =
(G′′,R′′)
====⇒ D4 implies that D′

3,=
(G′′,R′′)
====⇒ D′

4,

and marked(D′
3) = {(G

′′, R′′)}, marked(D′
4) = ∅. This, and the fact that by defini-

tion 5.2.9 D′
3 ∈ dom(γ), imply by lemma 5.2.10 that the step D′

3 =
(G′′,R′′)
====⇒ D′

4, is a

==⇒
γ

step.

The condition (G, R) 6= (G′, R′) is necessary. Otherwise the two resulting

records are the same:

Lemma 5.2.19. If D′
1 =

(G,R)
==⇒
γ

D′
2, marked(D

′
1) = {(G, R)}, and D′

1 =
(G,R)
==⇒ D′

3, then

D′
2 = D′

3 and marked(D
′
2) = ∅.
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Proof. The only marked redex in this case is not a self-referential one. If (D, R) is

not self-referential, then (D, R)/(D, R) = ∅.

Lemmas 5.2.18 and 5.2.19 prove γ-confluence of evaluation for a single marked

redex. Our goal is to generalize this proof arbitrary marked records D′
1 ∈ dom(γ),

and also to arbitrary γ-development steps (i.e. not only those reducing a redex, but

also erasing steps). Below we consider two cases. If the set F1 = marked(D′
1) does

not contain a self-referential redex, it is enough to show the property for one marked

redex other than the redex (G, R) reduced in the given γ-development step. Since in

this case a γ-development step is the same as the corresponding extended reduction

step, we can use lemma ?? to combine the results for each marked redex in F1. The

second case is when F1 contains a self-referential redex. Since in this case an γ-

development step is different from an extended reduction step and its result depends

on the marking of the self-referential redex, we need to consider two marked redexes

(the evaluation redex and the self-referential one). We also need to take into account

erasing steps =
e
=⇒. The proofs are given in the following lemmas.

Lemma 5.2.20. Let F1 = marked(D′
1) = {(G, R), (D, R̃)}, where (D, R̃) is not a self-

referential redex, and suppose D′
1 =

(G,R)
==⇒
γ

D′
2 D

′
1 =

(G′,R′)
===⇒ D′

3, where (G, R) 6= (G′, R′).

Then there exists D′
4 such that D

′
2 =

(G′,R′)/(G,R)
=======⇒ D′

4 and D
′
3 =

(G,R)/(G′,R′)
=======⇒

γ
D′

4.

Proof. By lemma 5.2.13 the redexes (G, R) and (D, R̃) are of the same kind. Note

also that (G, R) and (G′, R′) can not be in the same record component, since they are

both evaluation redexes. Let l, l′ denote the labels of the components where (G, R)

and (G′, R′) appear, respectively. We also use notation l̃ for the label where (D, R̃)

appears. It may be the case that l̃ is the same as l or l′.

The proof is by cases of the kinds of the three redexes. Note that (G, R) and

(D, R̃) are of the same kind by lemma 5.2.13.
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• (G, R), (D, R̃), and (G′, R′) are all term redexes. If l̃ 6= l, l̃ 6= l′, then all three

redexes occur in different components of the record, so the claim obviously

holds. Suppose l̃ = l′, i.e. R′ and R̃ occur in the same component. If these

redexes are independent (i.e. one does not contain the other), then the claim

of the lemma clearly holds. It may not be the case that R̃ contains R′, since

(G′, R′) is an evaluation redex, and therefore cannot be contained in another

redex. If R′ contains R̃, then R′ = (λx.B{R̃}) @ V or R′ = (λx.M) @ λy.B{R̃}.

In the first case, assuming B
′ = B[x := V ] and R̃′ = R̃′[x := V ], we have:

[l 7→ G{R}, l′ 7→ G′{(λx.B{R̃}) @ V }, . . . ] ==⇒
γ

[l 7→ G{Q}, l′ 7→ G′{(λx.B{R̃}) @ V }, . . . ] ==⇒

[l 7→ G{Q}, l′ 7→ G′{B′{R̃′}}, . . . ],

[l 7→ G{R}, l′ 7→ G′{(λx.B{R̃}) @ V }, . . . ] ==⇒

[l 7→ G{R}, l′ 7→ G′{B′{R̃′}}, . . . ] ==⇒
γ

[l 7→ G{Q}, l′ 7→ G′{B′{R̃′}}, . . . ].

The other case is similar, with the only difference that the redex R̃ gets du-

plicated rather than changed. The case when l̃ = l is similar to the case

when l̃ = l′, since the marked redexes are term redexes, and therefore γ-

developments are just extended reductions.

• (G, R) and (D, R̃) are term redexes, (G′, R′) is a substitution redex. In this case

R′ is an unmarked label (since F1 contains term redexes, it can not contain a

label). Let R′ = l1. The label l1 is bound to a value, so l1 6= l, l1 6= l′. If l1 6= l̃,

then the three redexes are independent, and the claim of the lemma clearly

holds. If l1 = l̃, then reducing the redex (G′, l1) duplicates R̃. However, it is

clear that (D, R̃) has the same two residuals on both reduction paths.
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• (G, R) and (D, R̃) are substitution redexes, (G′, R′) is a term redex. Then

R = R̃ = l1. Since F1 does not contain self-referential redexes, l1 6= l, l1 6= l̃.

Since l1 is bound to a value, l1 6= l′.

If l̃ 6= l, l̃ 6= l′, then all 4 labels are distinct, and the claim of the lemma

clearly holds. If l̃ = l′, i.e. of l1 of the marked redex (D, l1) occurs in the same

component as R′, and the record can be of one of the following forms (as before,

we show marked labels by underlining):

[l 7→ E{l1}, l
′ 7→ A{R′, l1}, l1 7→ V, . . . ],

[l 7→ E{l1}, l
′ 7→ E

′{(λx.B{l1}) @ V }, l1 7→ V, . . . ], or

[l 7→ E{l1}, l
′ 7→ E′{(λx.M) @ λy.B{l1}}, l1 7→ V, . . . ],

where in the first case A{2, l1} is an evaluation context3. It is easy to see that

the claim holds in all three cases (in the last case the redex (D, l1) gets dupli-

cated, but its residuals are the same on both reduction paths). The remaining

case is when l̃ = l, then the record is of the form

[l 7→ A{l1, l1}, l
′ 7→ E{R′}, l1 7→ V, . . . ].

Again, clearly both reduction paths lead to the same record with the same

residual of (D, l1).

• (G, R), (D, R̃), and (G′, R′) are all substitution redexes. Let R = l1 (hence

R̃ = l1) and R′ = l2. There are 3 possibilities:

1. l1 6= l2,

3Here and below we specify only one order in which two (or more) subterms occur in a context
if all the cases are analogous. For instance, here we do not consider the case when the evaluation
context is A{l1, R′}, because it is completely analogous to the case we have considered
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2. l1 = l2, (G
′, l1) 6∈ F1, i.e. it is not marked,

3. l1 = l2, (G
′, l1) ∈ F1, i.e. it is marked.

Let us consider all three possibilities:

1. If l1 6= l2, then the 4 labels l, l′, l1, l2 are all pairwise distinct (in addition

to the given conditions, we notice that l1, l2 are bound to values, and l, l′

contain evaluation redexes, so none of the first two labels equals to any of

the other two). We have the following 4 possibilities for l̃:

If l̃ = l, then the record is of the form

[l1 7→ V1, l2 7→ V2, l 7→ A{l1, l1}, l
′ 7→ E{l2}, . . . ],

where, as above, A{2, l1} is an evaluation context One can check that

reducing (G, l1) and (G′, l2) in any order leads to a record with the same

residual of (D, l1).

If l̃ = l′, then the case is similar to the case when l̃ = l.

If l̃ = l2, then the marked redex (D, l1) gets duplicated:

[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{l1}, l
′ 7→ E′{l2}, . . . ] ==⇒

γ

[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{V1}, l
′ 7→ E′{l2}, . . . ] ==⇒

[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{V1}, l
′ 7→ E′{λx.C{l1}}, . . . ],

[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{l1}, l
′ 7→ E

′{l2}, . . . ] ==⇒

[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{l1}, l
′ 7→ E′{λx.C{l1}}, . . . ] ==⇒

γ

[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{V1}, l
′ 7→ E′{λx.C{l1}}, . . . ].

The remaining possibility is that l̃ 6∈ {l, l′, l2}. Then all five labels are
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distinct, and the claim of the lemma clearly holds. Note that the case

l̃ = l1 is impossible because (D, l1) ∈ F1, but F1 does not contain self-

referential redexes.

2. If l1 = l2, and (G′, l1) is not marked, then we have one of the following

choices:

l̃ 6∈ {l, l′} : [l1 7→ V1, l 7→ E{l1}, l
′ 7→ E′{l1}, l̃ 7→ C{l1}, . . . ],

l̃ = l : [l1 7→ V1, l 7→ A{l1, l1}, l
′ 7→ E′{l1}, . . . ],

l̃ = l′ : [l1 7→ V1, l 7→ E{l1}, l
′ 7→ A{l1, l1}, . . . ].

In all three cases (D, l1) has the same residual on both reduction paths.

3. If l1 = l2, and (G′, l1) is marked, then the case is completely analogous to

case 2. Even though the occurrence of l1 in the component bound to l′ is

marked, this does not affect the non-development reduction, because this

reduction does not remove the mark of a label regardless of whether the

target of the substitution is marked or unmarked.

The remaining case is when the γ-development step erases a redex.

Lemma 5.2.21. Suppose F1 = marked(D′
1) does not contain any self-referential

redexes. If D′
1 =

(D,R)
==⇒
γ

D′
2, D

′
1 =

(G,R̃)
==⇒ D′

3, then there exists D′
4 such that D′

2 =
(G,R̃)
==⇒ D′

4

and D′
3 =

e

=⇒
∗

γ
D′

4.

Proof. By definition of an erasing γ-development step (D, R) is marked. Therefore if

(G, R̃) is marked, by lemma 5.2.13 it must be of the same kind as (D, R). We also

observe that the residuals of both redexes do not depend on what other redexes are

marked in the records. We have the following cases:
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1. (D, R) is a term redex. Then:

• If (G, R̃) is an unmarked term redex, then either the two redexes are

independent, in which case the claim clearly holds, or (D, R) is contained

in (G, R̃) (note that (G, R̃) is an evaluation redex, and therefore can not

be contained in (D, R)). In the latter case suppose (D, R) is contained in

the operand of (G, R̃):

[l 7→ E{(λx.A{x, . . . , x}) @ λy.B{R}}, . . . ] ==⇒

[l 7→ E{A{λy.B{R}, . . . , λy.B{R}}}, . . . ] =
e
=⇒

∗

γ

[l 7→ E{A{λy.B{R}, . . . , λy.B{R}}}, . . . ],

[l 7→ E{(λx.A{x, . . . , x}) @ λy.B{R}}, . . . ] =
e
=⇒
γ

[l 7→ E{(λx.A{x, . . . , x}) @ λy.B{R}}, . . . ] ==⇒

[l 7→ E{A{λy.B{R}, . . . , λy.B{R}}}, . . . ].

The case when (D, R) is contained in the operator of (G, R̃) is similar, but

no redex duplication happens in this case.

• If (G, R̃) is a marked term redex, then the case is analogous to the previous

one, but additionally we need to consider the following case: if (G, R̃) =

(D, R), then D′
3 = D′

4, since the residual of (G, R̃) is unmarked in D3.

• If (G, R̃) = (G, l) is a substitution redex, then it is unmarked. Since (G, l)

is an evaluation redex, the label l can not be contained in (D, R). Suppose
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(D, R) is contained in the value bound to l:

[l 7→ λx.C{R}, l′ 7→ E{l}, . . . ] ==⇒

[l 7→ λx.C{R}, l′ 7→ E{λx.C{R}}, . . . ] =
e
=⇒

∗

γ

[l 7→ λx.C{R}, l′ 7→ E{λx.C{R}}, . . . ],

[l 7→ λx.C{R}, l′ 7→ E{l}, . . . ] =
e
=⇒
γ

[l 7→ λx.C{R}, l′ 7→ E{l}, . . . ] ==⇒

[l 7→ λx.C{R}, l′ 7→ E{λx.C{R}}, . . . ].

In the remaining case (D, R) is independent from (G, l), and the claim of

the lemma clearly holds.

2. (D, R) = (D, l) is a substitution. We have the subcases:

• (G, R̃) is a term redex. It can not be contained in the value bound to l.

If (G, R̃) contains the marked occurrence of l of (D, l), then this occurrence

may be duplicated, in which case the resulting erasing γ-development remove

all residuals of the marked l from the set of marked redexes. The case sim-

ilar to the cases above where duplication of the marked redex occurs.

Otherwise (D, l) is independent from (G, R̃), no duplication occurs, and

the claim clearly holds.

• (G, R̃) = (G, l′), l′ 6= l. If (D, l) is not contained in the value bound to l′,

then the claim clearly holds. Otherwise the marked occurrence of l gets

duplicated by the evaluation redex, and both marked copies of l need to

be “erased”.

• (G, R̃) = (G, l). Note that the value bound to l does not contain a

marked occurrence of l, since by the condition of the lemma there is no
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self-referential redex among marked redexes. In this case either (G, l) is

independent of (D, l) and the claim clearly holds, or (G, l) = (D, l):

[l 7→ V, l′ 7→ E{l}, . . . ] ==⇒ [l 7→ V, l′ 7→ E{V }, . . . ],

[l 7→ V, l′ 7→ E{l}, . . . ] =
e
=⇒
γ

[l 7→ V, l′ 7→ E{l}, . . . ] ==⇒

[l 7→ V, l′ 7→ E{V }, . . . ].

Lemma 5.2.22. Suppose F1 = marked(D′
1) does not contain any self-referential

redexes. If D′
1 =

(G,R)
==⇒
γ

D′
2 D

′
1 =

(G′,R′)
===⇒ D′

3, then:

• If (G, R) 6= (G′, R′), then there exists D′
4 such that D′

2 =
(G′,R′)/(G,R)
=======⇒ D′

4 and

D′
3 =

(G,R)/(G′,R′)
=======⇒

γ
D′

4;

• If (G, R) = (G′, R′), then D′
2 = D′

3.

Proof. The first part by lemmas 5.2.18 and 5.2.20 and by definition of marked reduc-

tions. The second part by lemma 5.2.19 and by definition of marked reductions.

The case when F1 has a self-referential redex is slightly more complicated: we

cannot use definition of marked reductions, as we did for the case above when F1

does not have self-referential redexes, because in the case of a self-referential redex

γ-development reduction is different from the marked reduction:

[l1 7→ λx.l1, l2 7→ l1] ==⇒ [l1 7→ λx.l1, l2 7→ λx.l1], but

[l1 7→ λx.l1, l2 7→ l1] ==⇒
γ

[l1 7→ λx.l1, l2 7→ λx.l1].
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The label l1 in the second component of the result is marked in the first case, but

not in the second. However, it turns out that for both reductions a residual set of

a redex does not depend on the marking of any redexes in the record other than

the self-referential one, as shown in the following two lemmas. Note that the second

lemma considers an arbitrary γ-development step, not just an evaluation step, and

thus will be used for the proofs of elementary lift and project diagrams later in this

section.

Lemma 5.2.23. Suppose D′
1 =

(G,R)
==⇒ D′

2, (D, l) ∈ marked(D′
1) is a self-referential

redex, and D′
1 ∈ dom(γ). Let (D′, l) be a non-self-referential redex in D′

1 such that

(D′, l) 6∈ marked(D′
1).

Let D′′
1 be such that |D′

1| = |D
′′
1 | and marked(D′′

1) = marked(D′
1) ∪ {(D

′, l)},

and let D′′
1 =

(G,R)
==⇒ D′′

2 . Then marked(D′′
2) = marked(D′

2) ∪ ((D′, l)/(G, R)).

Proof. This follows directly from definition of marked reduction. Note that the

lemma holds for both marked and unmarked (G, R).

Lemma 5.2.24. Let marked(D′
1) = {(D, l), (D

′, l)}, D′
1

(D,l)
→
γ

D′
2. Let marked(D

′′
1) =

{(D, l), (D′′, l)}, |D′′
1 | = |D

′
1|, and D′′

1

(D,l)
→
γ

D′′
2 . Suppose that no more than one of

the three redexes is self-referential, and that D′′′
1 ∈ dom(γ), where marked(D′′′

1 ) =

{(D, l), (D′, l), (D′′, l)}, |D′′′
1 | = |D′

1|. Then D′′′
1

(D,l)
→
γ

D′′′
2 , where marked(D′′′

2 ) =

marked(D′
2) ∪marked(D

′′
2).

Proof. Since at most one of the three redexes may be a self-referential redex, we

consider the following 3 cases:

• None of the three redexes is self-referential. Let D̃ be a 4-hole context such
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that the first hole contains the value of the component bound to l, then

Given D̃{V, l, l, l}
(D,l)
→
γ

D̃{V, V, l, l}

and D̃{V, l, l, l}
(D,l)
→
γ

D̃{V, V, l, l},

we have D̃{V, l, l, l}
(D,l)
→
γ

D̃{V, V, l, l}.

Here the first reduction corresponds is the reduction when only (D′, l), but not

(D′′, l), is marked, and the second reduction is the case when (D′′, l), but not

(D′, l), is marked.

• (D′, l) is self-referential (note that this is completely analogous to the case when

(D′′, l) is self-referential, so we show only one of these cases). In this case no

other marked redex occurs in the component bound to l. The redexes (D, l)

and (D′′, l) may occur in the same or in different components. Let us show the

case when they occur in the same component, the other case is analogous:

Given

[l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ]
(D,l)
→
γ

[l 7→ λx.C{l}, l′ 7→ A{λx.C{l}, l}, . . . ]

and

[l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ]
(D,l)
→
γ

[l 7→ λx.C{l}, l′ 7→ A{λx.C{l}, l}, . . . ],

we have

[l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ]
(D,l)
→
γ

[l 7→ λx.C{l}, l′ 7→ A{λx.C{l}, l}, . . . ].

• (D, l) is self-referential (in this case the γ-development step is a non-evaluation

step). As in the previous case, the other two redexes may occur in the same

component or in two different ones. As before, we show only the former case,
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the latter one is analogous.

Given

[l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ]
(D,l)
→
γ

[l 7→ λx.C{λx.C{l}}, l′ 7→ A{l, l}, . . . ]

and

[l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ]
(D,l)
→
γ

[l 7→ λx.C{λx.C{l}}, l′ 7→ A{l, l}, . . . ],

we have

[l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ]
(D,l)
→
γ

[l 7→ λx.C{λx.C{l}}, l′ 7→ A{l, l}, . . . ].

We can generalize the previous lemma to the case of arbitrary sets of marked

redexes in a record:

Corollary 5.2.25. Let F1 = marked(D′
1) and let D′′

1 be such that |D′
1| = |D

′′
1 |,

marked(D′′
1) = {(D, l), (D′, l)} and (D′l) 6∈ F1. If D′

1

(D,l)
→
γ

D′
2 and D′′

1

(D,l)
→
γ

D′′
2 and

D′′′
1 ∈ dom(γ) (where |D′′′

1 | = |D
′
1| and marked(D′′′

1 ) = F1 ∪ {(D
′, l)}), then D′′′

1

(D,l)
→
γ

D′′′
2 , |D

′′′
2 | = |D

′
2|, and marked(D

′′′
2 ) = marked(D′

2) ∪marked(D
′′
2).

Proof. If F1 = ∅, the claim trivially holds. If F1 consists of one redex, the claim

holds by lemma 5.2.24.

Suppose F1 consists of n redexes. By the condition D′′′
1 ∈ dom(γ) at most

one of the marked redexes is self-referential. By lemma 5.2.24 the set of residuals of

the marked redex (D′, l) with respect to the redex (D, l) does not depend on whether

any other redexes in the record are marked. Similarly the set of residuals of any

redex in F1 does not depend on whether (D′, l) is marked. Therefore the resulting

set of marked redexes is the union marked(D′
2) ∪marked(D′′

2), where marked(D′
2) =

F1/(D, l), and marked(D′′
2) = (D′, l)/(D, l).
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The following two lemmas deal with the cases when the self-referential redex

is the only marked one (in addition to the redex being reduced) and when there is

one more marked redex. Lemmas 5.2.28 and 5.2.29 generalize these two cases to an

arbitrary set of marked redexes containing a self-referential redex.

Lemma 5.2.26. Let marked(D′
1) = {(D, l1), (G, l1)}. If D′

1 =
(G,l1)
===⇒

γ
D′

2, D
′
1 =

(G′,R′)
===⇒

D′
3, where (D, l1) is a self-referential redex and (G, l1) 6= (G′, R′), then there exists

D′
4 such that D

′
2 =

(G′,R′)/(G,l1)
=======⇒ D′

4 and D
′
3 =

(G,l1)/(G′,R′)
=======⇒

γ
D′

4.

Proof. The proof is by cases on (G′, R′). Note that both (G′, R′) and (G, l1) are

evaluation redexes, and therefore they occur in two different components, and none

of these components is bound to l1.

• (G′, R′) is a term redex:

D1 = [l1 7→ λx.C{l1}, l 7→ E{l1}, l
′ 7→ E′{R′}, . . . ]

The two redexes reduced are independent, and on both reduction paths we

arrive at the record:

D4 = [l1 7→ λx.C{l1}, l 7→ E{λx.C{l1}}, l
′ 7→ E′{Q′}, . . . ]

So the self-referential redex has only one residual - itself.

• (G′, R′) is a substitution redex, R′ = l2 6= l1. Analogous to the previous case.

• (G′, R′) is a substitution redex, R′ = l1. Note that l1 in (G′, R′) is not marked,

since, by the conditions of the lemma, only the other two redexes are marked.
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Then

D1 = [l1 7→ λx.C{l1}, l 7→ E{l1}, l
′ 7→ E

′{l1}, . . . ],

D4 = [l1 7→ λx.C{l1}, l 7→ E{λx.C{l1}}, l
′ 7→ E′{λx.C{l1}}, . . . ].

The case when the two evaluation steps reduce the same redex needs to be

treated separately, since the label on one of the redexes gets preserved, and the

resulting γ-development step erases this redex:

Lemma 5.2.27. Suppose marked(D′
1) = {(D, l), (G, l)}, D

′
1 =

(G,l)
==⇒
γ

D′
2 and D′

1 =
(G,l)
==⇒

D′
3, where (D, l) is self-referential. Then D′

3 =
(G,l)
==⇒
γ

D′
2.

Proof. The following reduction sequences prove the claim. Here =
e
=⇒
γ

denotes the

erasing γ-development step.

[l 7→ λx.C{l}, l′ 7→ E{l}, . . . ] ==⇒
γ

[l 7→ λx.C{l}, l′ 7→ E{λx.C{l}}, . . . ],

[l 7→ λx.C{l}, l′ 7→ E{l}, . . . ] ==⇒

[l 7→ λx.C{l}, l′ 7→ E{λx.C{l}}, . . . ] =
e
=⇒
γ

[l 7→ λx.C{l}, l′ 7→ E{λx.C{l}}, . . . ].

Lemma 5.2.28. Suppose F1 = marked(D′
1) has a self-referential redex. If D′

1 =
(G,l)
==⇒
γ

D′
2, D

′
1 =

(G′,R′)
===⇒ D′

3, then there exists D
′
4 such that D

′
2 =

(G′,R′)/(G,l)
======⇒ D′

4, and D
′
3 =

(G,l)/(G′,R′)
======⇒

γ

D′
4.

Proof. The proof is by induction on the number of redexes in F1. If F1 consists of
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just the self-referential redex in addition to the redex (G, l), then by lemma 5.2.26

the claim of the lemma holds.

Suppose the lemma holds for an n-redex subset of F1, let F
′
1 denote this subset.

Let (D′, l) ∈ F1, (D
′, l) 6∈ F ′1. Let (D, l) be the self-referential redex of F ′1. Note that

(D′, l) is not self-referential, since D′
1 ∈ dom(γ), and therefore by lemma 5.2.13 F1

has no more than one self-referential redex.

Let D′′
1 be such that |D′′

1 | = |D
′
1| and marked(D′′

1) = F ′1. By the inductive

hypothesis D′′
1 =

(G,l)
==⇒
γ

D′′
2 , D

′′
1 =

(G′,R′)
===⇒ D′′

3 implies that there exists D′′
4 such that

D′′
2 =

(G′,R′)/(G,l)
======⇒ D′′

4 and D′′
3 =

(G,l)/(G′,R′)
======⇒

γ
D′′

4 .

Let D′′′
1 be such that |D′′′

1 | = |D
′
1| and marked(D′′′

1 ) = {(D, l), (G, l)}). By

lemma 5.2.20 D′′′
1 =

(G,l)
==⇒
γ

D′′′
2 and D′′′

1 =
(G′,R′)
===⇒ D′′′

3 implies that there exists D′′′
4 such

that D′′′
2 =

(G′,R′)/(G,l)
======⇒ D′′′

4 , D
′′′
3 =

(G,l)/(G′,R′)
======⇒

γ
D′′′

4 .

We combine the two diagrams by lemma 5.2.23 for the ==⇒ steps and by

lemma 5.2.24 for the ==⇒
γ

steps: let D̃′
′

1 be such that marked(D̃′
′

1) = F ′1 ∪ {(D, l)}).

Then D̃1 =
(G,l)
==⇒
γ

D̃2, where marked(D̃2) = marked(D′′
2) ∪marked(D′′′

2 ) and D̃1 =
(G′,R′)
===⇒

D̃3, where marked(D̃3) = marked(D′′
3) ∪marked(D′′′

3 ) imply that D̃2 =
(G′,R′)/(G,l)
======⇒ D̃4,

D̃3 =
(G,l)/(G′,R′)
======⇒

γ
D̃4. This shows that the claim of the lemma holds for a set of n + 1

redexes of D′
1.

Lemma 5.2.29. Suppose marked(D′
1) = F1 has a self-referential redex. If D′

1 =
(D,l)
==⇒
γ

D′
2, and D′

1 =
(G,R̃)
==⇒ D′

3, then there exists D′
4 such that D′

2 =
(G,R̃)
==⇒ D′

4, and D′
3 =

e

=⇒
∗

γ

D′
4.

Proof. We observe that the only redex in F1 that affects the reductions is the self-

referential redex. The marking of all other redexes (i.e. those not equal to (D, l) and

(G, R̃)) is preserved by the reductions, so we are not considering any other marked

redexes.
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The subcases are as follows:

1. If (G, R̃) is a term redex, then the marked occurrence of l corresponding to (D, l)

is either independent of (G, R̃), or is contained in (G, R̃). In the former case

the claim of the lemma clearly holds. In the latter case the marked occurrence

of l may be duplicated by the reduction of (G, R̃), in which case all the copies

of l need to be “erased” by the =
e
=⇒

∗

γ
sequence.

2. If (G, R̃) = (G, l′) is a substitution redex and l′ 6= l, then the only dependency

between the two redexes is when (D, l) occurs in the value bound to l′. In this

case:

[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{l′}, . . . ] ==⇒

[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{λy.B{l}}, . . . ] =
e
=⇒

∗

γ

[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{λy.B{l}}, . . . ],

[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{l′}, . . . ] =
e
=⇒
γ

[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{l′}, . . . ] ==⇒

[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{λy.B{l}}, . . . ].

The other cases are trivial.

3. If (G, R̃) = (G, l), then we have the following possibilities:

• (G, l) is not marked. In this case the two redexes are independent (since

(D, l) is not self-referential, and therefore can not occur in the component

bound to l), and the claim of the lemma holds.

• (G, l) is marked, (G, l) 6= (D, l). The two redexes also must be indepen-

dent, and the case is similar to previous one.

• (G, l) = (D, l). This case is considered in lemma 5.2.27.
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Lemma 5.2.30 (γ-confluence of Evaluation of C). The calculus C has γ-confluence

of evaluation (property 4.7.1), i.e. if D′
1 ==⇒

γ
D′

2, D
′
1 ==⇒ D′

3, then there exists D
′
4 such

that D′
2 ==⇒ D′

4 and D
′
3 ==⇒

γ
D′

4.

Proof. If marked(D′
1) does not contain a self-referential redex, then the lemma follows

by lemma 5.2.22, otherwise by lemmas 5.2.28 and 5.2.29.

5.2.5 Elementary Lift and Project Diagrams in Calculus of

Records

Properties 4.6.1 and 4.6.2 are another two properties required for the proof of lift

and project. To prove these properties, we use an approach similar to that of the

proof of γ-confluence of evaluation above.

The following property of terms is used in the further proofs.

Lemma 5.2.31. If M = E{l}, then there is no such context C and redex R that

M = C{R} and R = A{l}, i.e. such that R contains the occurrence of l.

Proof. Suppose such C and R exist. If M = E{l} and l is contained in a redex R,

then M = C{A{l}}, and E = C{A}. Therefore C = E′ ∈ EvalContextT , and

M = E′{R}, which contradicts the class preservation lemma 5.1.21.

The following 4 lemmas show all cases for the proof of property 4.6.2 (elemen-

tary project diagram).

Lemma 5.2.32. Suppose marked(D′
1) = {(D, R), (D′, R′)}, D′

1 ◦−
(D,R)−−−→
γ

D′
2, and D′

1

=
(G,R̃)
==⇒ D′

3, where (D, R) and (D′, R′) are not self-referential. Then there exists

D′
4 such that D′

2 =
(G,R̃)/(D,R)
======⇒ D′

4 and D′
3

(D,R)/(G,R̃)

−−→∗

γ
D′

4. Moreover, if the sequence
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(D,R)/(G,R̃)

−−→∗

γ
consists of more than one step, then for any such reduction sequence

D′
3

(D,R)/(G,R̃)

−−→∗

γ
D′

4.

Proof. Let l, l′, l̃ be the labels of the components containing (D, R), (D′, R′), and

(G, R̃) respectively. We have the following cases:

1. All three redexes are term redexes. When all three redexes are independent,

the claim obviously holds. It also clearly holds in the case when (D, R) and

(G, R̃) are in different terms, even if (D′, R′) is in the same term with one of

the former redexes. If (G, R̃) contains (D, R), then we apply lemma 5.1.15 to

the term where both of these redexes occur. This is the only case when (D, R)

may be duplicated, i.e. the sequence
(D,R)/(G,R̃)

−−→∗

γ
may consist of more than one

step. By lemma 5.1.15 the order of steps in this sequence does not matter.

There are no other cases, since (D, R) can not contain (G, R̃) because the latter

is an evaluation redex.

2. The marked redexes are term redexes, and the evaluation redex is a substitution

redex. Let R̃ = l1. Note that l1 6= l̃, since (G, l1) is an evaluation redex, and

therefore can not be self-referential. We have the following subcases:

(a) Among the 4 labels l, l′, l1, and l̃, no two are equal. In this case the claim

of the lemma clearly holds.

(b) l1 6∈ {l, l
′}. It may be the case that l = l̃ 6= l′, l′ = l̃ 6= l, or l = l′ = l̃.

Assume the third possibility. By lemma 5.2.31 the redexes R and R′ can
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not contain the redex occurrence of l1. We have the following options:

I. [l̃ 7→ A{l1, R, R
′}, l1 7→ V, . . . ] R, R′ independent

II. [l̃ 7→ A{l1,B{R
′}}, l1 7→ V, . . . ] R = B{R′}

III. [l̃ 7→ A{l1,B{R}}, l1 7→ V, . . . ] R′ = B{R}

By lemma 5.1.14 in all three cases the context containing l is still an

evaluation context after the reduction of R. The substitution does not

affect the reduction of R, and from the properties of the term calculus

it follows that in all three cases the residual(s) of R′ will be the same

regardless of which of the redexes has been reduced first: l1 or R. No

duplication happens in this case, so the resulting γ-development sequence

consists of a single step.

The other two cases (l = l̃ 6= l′ and l′ = l̃ 6= l) are analogous to the case

we have considered, but simpler.

(c) l̃ 6∈ {l, l′}. As in the previous case, let us consider the subcase l = l′ = l1

in detail, the other two subcases (l = l1 6= l′ and l′ = l1 6= l) are similar,

but easier.

If l = l′ = l1, then both R and R′ occur in the value being substituted by

the evaluation redex. Since this case is more complex than the previous

one, we show the actual reductions rather than just the initial records. As

above, we have the following possibilities for mutual positions of R and

R′:
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I. R and R′ are independent:

[l̃ 7→ E{l1}, l1 7→ λx.C{R,R′}, . . . ] ◦−−→
γ

[l̃ 7→ E{l1}, l1 7→ λx.C{Q,R′}, . . . ] ==⇒

[l̃ 7→ E{λx.C{Q,R′}}, l1 7→ λx.C{Q,R′}, . . . ],

[l̃ 7→ E{l1}, l1 7→ λx.C{R,R′}, . . . ] ==⇒

[l̃ 7→ E{λx.C{R,R′}}, l1 7→ λx.C{R,R′}, . . . ] −−→∗

γ

[l̃ 7→ E{λx.C{Q,R′}}, l1 7→ λx.C{Q,R′}, . . . ].

The order of reduction of the copies of R in the sequence −−→∗

γ
does not

matter. II. R contains R′. Suppose R′ is contained in the operand of R.

Let N denote λz.B{R′}, L denote A{y, . . . , y}. We have the following:

[l̃ 7→ E{l1}, l1 7→ λx.C{λy.L @ N}, . . . ] ◦−−→
γ

[l̃ 7→ E{l1}, l1 7→ λx.C{A{N, . . . , N}}, . . . ] ==⇒

[l̃ 7→ E{λx.C{A{N, . . . , N}}}, l1 7→ λx.C{A{N, . . . , N}}, . . . ],

[l̃ 7→ E{l1}, l1 7→ λx.C{λy.L @ N}, . . . ] ==⇒

[l̃ 7→ E{λx.C{λy.L @ N}}, l1 7→ λx.C{λy.L @ N}, . . . ] −−→∗

γ

[l̃ 7→ E{λx.C{A{N, . . . , N}}}, l1 7→ λx.C{A{N, . . . , N}}, . . . ].

In this case R′ gets duplicated by both redexes, but its residuals are the

same on both reduction paths. The order of reduction of the two copies

of the redex λy.A{y, . . . , y} @ λz.B{R′} does not matter.

If R′ is contained in the operator of R, then it gets changed, rather than

duplicated, by reduction of R. The redex R gets duplicated by the substi-

tution. It is clear that R′ has the same residuals on both reduction paths
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and that the order of reduction of the two copies of R does not matter.

III. R′ contains R. Let R′ = A{R}. It does not matter if R is contained

in the operand or in the operator of R′, because R′ is not reduced in these

reductions. We have:

[l̃ 7→ E{l1}, l1 7→ λy.C{A{R}}, . . . ] ◦−−→
γ

[l̃ 7→ E{l1}, l1 7→ λy.C{A{Q}}, . . . ] ==⇒

[l̃ 7→ E{λy.C{A{Q}}}, l1 7→ λy.C{A{Q}}, . . . ].

[l̃ 7→ E{l1}, l1 7→ λy.C{A{R}}, . . . ] ==⇒

[l̃ 7→ E{λy.C{A{R}}}, l1 7→ λy.C{A{R}}, . . . ] −−→∗

γ

[l̃ 7→ E{λy.C{A{Q}}}, l1 7→ λy.C{A{Q}}, . . . ]

The redex R′ has two residuals of the form A{Q} on both reduction paths.

The copies of the redex R can be reduced in any order.

(d) l = l̃, l′ = l1. As in case (b), by lemma 5.2.31 the redex occurrence of l1

in the component bound to l̃ is independent from the redex R. The initial

record is

[l̃ 7→ A{l1, R}, l1 7→ λx.C{R′}, . . . ].

Here R′ gets duplicated by the substitution redex, but clearly has the

same residuals on both reduction paths. By lemma 5.1.14 A{l1, Q} ∈

EvalContextT .

(e) l = l1, l
′ = l̃. The initial record is

[l̃ 7→ A{l1, R
′}, l1 7→ λx.C{R}, . . . ].

Here R, not R′, gets duplicated by the substitution. The two residuals of
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R can be reduced in any order. R′ has only one residual in this case.

3. The marked redexes are substitution redexes, and the evaluation redex is a

term redex. Let R = l1, then R
′ = l1 by lemma 5.2.13. By the condition of this

lemma the marked redexes are not self-referential, so l1 6= l, l1 6= l′. Also l1 6= l̃,

since l1 is bound to a value, and l̃ is bound to an evaluatable term. As in the

previous case, we have several subcases of mutual positions of the labels. Let

us consider the case when l = l′ = l̃, i.e. all three redexes occur in the same

term. There may be several possibilities:

• R̃ and the two occurrences of l1 in the component bound to l̃ are indepen-

dent, i.e. the initial record is:

[l̃ 7→ A{R̃, l1, l1}, l1 7→ V, . . . ]

Without loss of generality, suppose that the first occurrence of l1 is the

redex R. By lemma 5.1.13 A{2, l1, l1} ∈ EvalContextT implies that

A{2, V, l1} ∈ EvalContextT , therefore the reduction of (G, R̃)/(D, l1) is

indeed an evaluation step. It is clear that both reduction paths result in

the same record with the same (single) residual of R′.
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• Both R and R′ occur in the operand part of R̃:

[l̃ 7→ E{(λx.A{x, . . . , x}) @ λy.B{l1, l1}}, l1 7→ V, . . . ] ◦−−→
γ

[l̃ 7→ E{(λx.A{x, . . . , x}) @ λy.B{V, l1}}, l1 7→ V, . . . ] ==⇒

[l̃ 7→ E{A{λy.B{V, l1}, . . . , λy.B{V, l1}}}, l1 7→ V, . . . ],

[l̃ 7→ E{(λx.A{x, . . . , x}) @ λy.B{l1, l1}}, l1 7→ V, . . . ] ==⇒

[l̃ 7→ E{A{λy.B{l1, l1}, . . . , λy.B{l1, l1}}}, l1 7→ V, . . . ] −−→∗

γ

[l̃ 7→ E{A{λy.B{V, l1}, . . . , λy.B{V, l1}}}, l1 7→ V, . . . ].

The copies of R = l can be reduced in any order in the sequence −−→∗

γ
.

• The other cases (when both R and R′ occur in the operator part of R̃, or

when one of them occurs in the operator and the other in the operand)

are similar.

The other cases (l = l′ 6= l̃, l = l̃ 6= l′, l′ = l̃ 6= l, and all the three labels

distinct) are similar to the one we have considered, but easier.

4. All three redexes are substitution redexes, where R̃ = l2 6= l1. In this case

l̃ 6= l2, since R̃ is an evaluation redex. As in case 3, l1 6∈ {l, l
′, l̃}. We have the

following cases:

(a) All 5 labels are different. In this case the lemma trivially holds.

(b) l = l′ = l̃. The initial record is

[l̃ 7→ A{l2, l1, l1}, l1 7→ V1, l2 7→ V2, . . . ].

By lemma 5.1.13 A{2, V1, l1} ∈ EvalContextT , so the residual of the

evaluation redex is indeed an evaluation redex. In this case no redexes get
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duplicated, and the claim clearly holds.

(c) l = l′ = l2. Assuming (without loss of generality) that the first marked

occurrence of l1 corresponds to the redex R, the initial and the final records

in this case are:

[l̃ 7→ E{l2}, l1 7→ V1, l2 7→ λx.C{l1, l1}, . . . ],

[l̃ 7→ E{λx.C{V1, l1}}, l1 7→ V1, l2 7→ λx.C{V1, l1}, . . . ].

The two copies of R can be reduced in any order.

(d) l = l′, l 6= l̃, l 6= l2. The claim clearly holds.

(e) l = l̃, l′ = l2. The initial and the final records are:

[l̃ 7→ A{l2, l1}, l1 7→ V1, l2 7→ λx.B{l1}, . . . ],

[l̃ 7→ A{λx.B{l1}, V1}, l1 7→ V1, l2 7→ λx.B{l1}, . . . ].

Again we use lemma 5.1.13 to show that the residual of the evaluation

redex is an evaluation redex. Redex R′ gets duplicated.

(f) l = l̃, l′ 6= l2, l
′ 6= l̃. Similar to the previous case.

(g) l = l2, l
′ = l̃. The initial and the final records are:

[l̃ 7→ A{l2, l1}, l1 7→ V1, l2 7→ λx.B{l1}, . . . ],

[l̃ 7→ A{λx.B{V1}, l1}, l1 7→ V1, l2 7→ λx.B{V1}, . . . ].

Here the redex R gets duplicated. Its two residuals can be reduced in any

order. The redex R′ has just a single residual on both reduction paths.

(h) l = l2, l
′ 6= l2, l

′ 6= l̃. Similar to the previous case.

5. All three redexes are substitution redexes, R̃ = l1. Note that R̃ is not marked
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since by the condition of the lemma the only two marked redexes are R and R′.

Similarly to the previous case, l1 6∈ {l, l
′, l̃}. Since none of the redexes R and

R′ occur in the component bound to l1 (i.e. in the value being substituted),

no redex duplication is possible, so the claim of the lemma clearly holds in this

case.

Lemma 5.2.33. Suppose marked(D′
1) = {(D, l), (D′, l)}. Let D′

1 ◦−
(D,l)−−→
γ

D′
2 and

D′
1 =

(G,R̃)
==⇒ D′

3, where (D′, l) is self-referential. Then there exists D′
4 such that D′

2

=
(G,R̃)/(D,l)
=====⇒ D′

4 and D′
3

(D,l)/(G,R̃)

−−→∗

γ
D′

4. If the sequence
(D,l)/(G,R̃)

−−→∗

γ
consists of more than

one step, then for any order of steps in the reduction sequence we have D ′
3

(D,l)/(G,R̃)

−−→∗

γ

D′
4.

Proof. Let l, l1, l̃ be the labels of components where (D′, l), (D, l), and (G, R̃) occur,

respectively. Note that l 6= l̃ by class preservation, since (D′, l) is a self-referential

redex, and therefore the component bound to l is a value. Also l1 6= l by lemma 5.2.13,

since (M1, F1) ∈ dom(γ), and therefore F1 contains at most one self-referential redex.

We have the following cases:

1. R̃ is a term redex, suppose R̃ ÃT Q̃. If l1 6= l̃, we have the following initial

and final records:

[l 7→ λx.C{l}, l1 7→ A{l}, l̃ 7→ E{R̃}, . . . ],

[l 7→ λx.C{l}, l1 7→ A{λx.C{l}}, l̃ 7→ E{Q̃}, . . . ].

The self-referential redex has just one marked residual – itself.

If l1 = l̃, i.e. R̃ and the non-self-referential marked occurrence of l are in the

same component, we have one of the following:
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• R̃ and the marked occurrence of l are independent. This case is similar

to the case when l1 6= l̃. By lemma 5.1.13 the residual of the evaluation

redex is itself evaluation redex.

• The marked l occurs in the operator of R̃ (R̃ is an application since it

contains l). Without loss of generality assume that l occurs in the first

hole of the multi-hole context A below. The initial and the final records

are:

[l 7→ λx.C{l}, l̃ 7→ E{(λy.A{l, y, . . . , y}) @ V }, . . . ],

[l 7→ λx.C{l}, l̃ 7→ E{A{λx.C{l}, V, . . . , V }}, . . . ].

As before, the self-referential redex has a single marked residual – itself.

• The marked l occurs in the operand of R̃. The initial and the final records

are:

[l 7→ λx.C{l}, l̃ 7→ E{(λy.A{y, . . . , y}) @ λz.B{l}}, . . . ],

[l 7→ λx.C{l}, l̃ 7→ E{A{λz.B{λx.C{l}}, . . . , λz.B{λx.C{l}}}}, . . . ].

Here the non-self-referential marked occurrence of l gets duplicated by

the term redex. The resulting record is the same, regardless of which

redex (the marked substitution or the application) is performed first and

regardless of the order in which the residuals of (D, l) w.r.t. (G, R̃) are

reduced. The self-referential redex does not have any marked residuals

besides itself.

2. R̃ = l2 6= l is a substitution redex. Note that l̃ 6= l2, since R̃ is an evaluation

redex. We have the following possibilities:

• l1 6= l2, l1 6= l̃. It is easy to check that the claim of the lemma holds in

this case.
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• l1 = l2. The reductions on both paths lead to the same record with the

same residuals of the self-referential redex. The two residuals of (D, l) in

the γ-development reduction can be reduced in any order.

[l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.A{λx.C{l}}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ E{λy.A{λx.C{l}}}, l1 7→ λy.A{λx.C{l}}, . . . ],

[l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.A{l}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ E{λy.A{l}}, l1 7→ λy.A{l}, . . . ] −−→∗

γ

[l 7→ λx.C{l}, l̃ 7→ E{λy.A{λx.C{l}}}, l1 7→ λy.A{λx.C{l}}, . . . ].

• l1 = l̃. In this case the initial and the final records are as shown below.

By lemma 5.1.13 A{2, λx.C{l}} ∈ EvalContextT .

[l 7→ λx.C{l}, l̃ 7→ A{l2, l}, l2 7→ V, . . . ],

[l 7→ λx.C{l}, l̃ 7→ A{V, λx.C{l}}, l2 7→ V, . . . ].

3. R̃ = l is a substitution redex. This occurrence of l is not marked, since by the

condition of the lemma only the other two redexes are marked.

If l1 = l̃, the initial and the final records are as follows:

[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ],

[l 7→ λx.C{l}, l̃ 7→ A{λx.C{l}, λx.C{l}}, . . . ].

The residual of the self-referential redex obtained by the ==⇒ step is marked,

since the marking is removed only by a development step that substitutes into

a marked occurrence of the same label. Thus in this case the self-referential
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redex has two marked residuals in the resulting record. It is easy to see that

these residuals are the same on both reduction paths. As in the previous case,

we have used lemma 5.1.13 to show that the residual of the evaluation redex is

evaluation redex.

The case when l1 6= l̃ is similar to case when l1 = l̃. In this case the self-

referential redex also has two marked residuals.

The next case is when a self-referential redex gets reduced by the ◦−−→
γ

step:

Lemma 5.2.34. Suppose marked(D′
1) = {(D, l), (D′, l)}. Let D′

1 ◦−
(D,l)−−→
γ

D′
2 and

D′
1,=

(G,R̃)
==⇒ D′

3, where (D, l) is self-referential. Then there exists D′
4 such that D′

2

=
(G,R̃)/(D,l)
=====⇒ D′

4 and D′
3

(D,l)/(G,R̃)

−−→∗

γ
D′

4. The γ-development sequence
(D,l)/(G,R̃)

−−→∗

γ
either

consists of one step, or of two steps, where the self-referential redex is reduced the

last.

Proof. Let l, l′, and l̃ denotes labels of the components where (D, l), (D′, l), and (G, R̃)

occur, respectively. Similarly to the previous lemma 5.2.33, l 6= l′, l 6= l̃. As in the

proof of the previous lemma, we have 3 cases:

1. R̃ is a term redex. Let R̃ÃT Q̃.

Suppose l′ = l̃. We have the following possibilities:

• R̃ and the marked occurrence of l are independent in the component bound

to l̃. The initial and the final records are:

[l 7→ λx.C{l}, l̃ 7→ A{R̃, l}, . . . ],

[l 7→ λx.C{λx.C{l}}, l̃ 7→ A{Q̃, l}, . . . ].
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Note that since the self-referential redex is reduced by a γ-development step,

it does not have a residual, i.e. the occurrence of l after the substitution

is unmarked.

• The marked l occurs in the operator of R̃. Below are the initial and the

final records:

[l 7→ λx.C{l}, l̃ 7→ E{(λy.A{l, y, . . . , y}) @ V }, . . . ],

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{A{l, V, . . . , V }}, . . . ].

• The marked l occurs in the operand of R̃. In this case the marked non-

self-referential redex gets duplicated. As in the previous cases, we show

the initial and the final records:

[l 7→ λx.C{l}, l̃ 7→ E{(λy.A{y, . . . , y}) @ λz.B{l}}, . . . ],

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{A{λz.B{l}, . . . , λz.B{l}}}, . . . ].

The case when l′ 6= l̃ is analogous to the first of the subcases above.

Note that in all cases the resulting γ-development reduction is one-step.

2. R̃ = l1 6= l is a substitution redex. In this case l1 6= l̃, since an evaluation redex

can not be self-referential. We have the following subcases:

• l1 = l′. The marked non-self-referential redex gets duplicated. The initial

and the final records are:

[l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.A{l}, . . . ],

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λy.A{l}}, l1 7→ λy.A{l}, . . . ].
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• l′ = l̃. The initial record in this case is

[l 7→ λx.C{l}, l̃ 7→ A{l1, l}, l1 7→ V, . . . ],

and the claim clearly holds.

• l′ 6= l1, l
′ 6= l̃. All three redexes are independent, and the claim clearly

holds.

In all three subcases the resulting γ-development sequence is one-step.

3. R̃ = l is a substitution redex. Note that this occurrence of l is unmarked, since

by the condition of the lemma only the other two redexes are marked. In this

case the self-referential redex gets duplicated.

Suppose l′ 6= l̃. The order in which its two residuals are reduced is important.

It is easy to see that reducing them in the other order leads to a different record,

i.e. to a record that does not satisfy the lemma. In this case we show both

reduction sequences step-by-step:

[l 7→ λx.C{l}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ==⇒

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λx.C{λx.C{l}}}, l′ 7→ A{l}, . . . ].

[l 7→ λx.C{l}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ E{λx.C{l}}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{l}, l̃ 7→ E{λx.C{λx.C{l}}}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λx.C{λx.C{l}}}, l′ 7→ A{l}, . . . ].

The case when l′ = l̃, i.e. when the marked non-self-referential redex occurs
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in the component bound to l̃, is completely analogous to the case when l′ 6= l̃.

The resulting −−→∗

γ
also consists of two steps such that the second one reduces

the self-referential redex. The initial record in this case is:

[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ].

Lemma 5.2.35. Suppose marked(D′
1) = {(D, R), (D

′, R′), (G, R̃)}. Let D′
1 ◦−

(D,R)−−−→
γ

D′
2

and D′
1 =

(G,R̃)
==⇒ D′

3. Then there exists D
′
4 such that D

′
2 =

(G,R̃)/(D,R)
======⇒ D′

4 andD
′
3

(D,R)/(G,R̃)

−−→∗

γ

D′
4. If (D, R) is a self-referential substitution redex, then the sequence

(D,R)/(G,R̃)

−−→∗

γ
con-

sists of two steps such that the last step reduces the self-referential redex. Otherwise

the γ-development sequence is either one-step, or the order of reduction in it does not

matter.

Proof. By lemma 5.2.13 we have two cases:

1. All three marked redexes are term redexes. The reduction of a term redex does

not depend on the marking of any other redex in the record. It is also the

case that for a term redex (D, R)/(D, R) = ∅. Therefore the fact that (G, R̃)

is marked does not affect the reduction, and the case is analogous to case 1 of

lemma 5.2.32. If the resulting γ-development sequence is multi-step, then the

order of reduction of the redexes does not matter.

2. R = R′ = R̃ = l. Let l1, l
′, and l̃ be the labels of components where the redexes

R, R′, and R̃ occur, respectively. l 6= l̃, since (G, R̃) is an evaluation redex. We

have the following subcases:
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(a) l1 6= l, l′ 6= l, i.e. none of the redexes is self-referential. Suppose that

l′ = l1 = l̃, i.e. all the redexes occur in the same component. Assum-

ing, without loss of generality, that context A contains them in the order

R̃, R,R′, we have the following initial and final records:

[l̃ 7→ A{l, l, l}, l 7→ V, . . . ],

[l̃ 7→ A{V, V, l}, l 7→ V, . . . ].

We use lemma 5.1.13 to show that after the ◦−−→
γ

step the residual of (G, R̃)

is an evaluation redex. The cases when the three redexes occur in different

components are similar.

(b) l′ = l, i.e. the redex (D′, R′) is self-referential. Assuming that the other

two redexes occur in the same component, we have the following reduc-

tions:

[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ] ◦−−→
γ

[l 7→ λx.C{l}, l̃ 7→ A{l, λx.C{l}}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ A{λx.C{l}, λx.C{l}}, . . . ],

[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ A{λx.C{l}, l}, . . . ] →
γ

[l 7→ λx.C{l}, l̃ 7→ A{λx.C{l}, λx.C{l}}, . . . ].

Here the self-referential redex has two marked residuals. The case when

the two non-self-referential redexes occur in different components is anal-

ogous.

(c) l1 = l, i.e. (D, R) is self-referential. Again we show the case when the

other two redexes occur in the same component. The following reductions
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prove the claim of the lemma.

[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ A{l, l}, . . . ] ==⇒

[l 7→ λx.C{λx.C{l}}, l̃ 7→ A{λx.C{λx.C{l}}, l}, . . . ],

[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ A{λx.C{l}, l}, . . . ] ◦−−→
γ

[l 7→ λx.C{l}, l̃ 7→ A{λx.C{λx.C{l}}, l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ A{λx.C{λx.C{l}}, l}, . . . ].

Here, as in case 3 of lemma 5.2.34, the order in which the two resulting γ-

development steps are performed matters: switching the order will result

in a reduction that does not satisfy the lemma.

Note that in cases (a) and (b) the γ-development reduction is one-step, and in

(c) the self-referential redex is reduced last.

Lemma 5.2.36 (Elementary Project Diagram for C). If D′
1 ◦−

(D,R)−−−→
γ

D′
2 and

D′
1 =

(G,R̃)
==⇒ D′

3, then there exists D′
4 such that D′

2 =
(G,R̃)/(D,R)
======⇒ D′

4 and D′
3

(D,R)/(G,R̃)

−−→∗

γ

D′
4.

Proof. If marked(D′
1) does not have a self-referential redex, then the lemma follows

from lemma 5.2.32 if R̃ is not marked and from the cases 1 or 2(a) of lemma 5.2.35

if R̃ is marked by induction on the number of redexes in marked(D′
1). The proof is

analogous to the proof of lemma 5.2.22.

Suppose marked(D′
1) has a self-referential redex, but (D, R) is not self-referential.

Let (D′, R′) be the self-referential redex in marked(D′
1). By lemma 5.2.33 or part
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2(b) of lemma 5.2.35 the claim of the lemma holds for D′′
1 such that |D′′

1 | = |D
′
1| and

marked(D′′
1) = {(D, R), (D

′, R′)}) or marked(D′′
1) = {(D, R), (D

′, R′), (G, R̃)}) when

(G, R̃) is marked. The rest of the redexes in marked(D′
1) are not self-referential,

since D′
1 ∈ dom(γ). Let (D′′, R′′) 6= (D, R) be another redex in marked(D′

1). Note

that it is a substitution redex by lemma 5.2.13. Then by lemma 5.2.32 or by case

2(a) of lemma 5.2.35 the claim of the lemma holds for D′′
1 (in both cases). Then by

corollary 5.2.25 for the→
γ
steps and by lemma 5.2.23 for the ==⇒ steps we can combine

the diagrams for individual redexes in marked(D′
1) into a diagram for D′

1. We use

the fact that, since a self-referential redex is not reduced in any of the reductions,

the redexes in the sequence
(D,R)/(G,R̃)

−−→∗

γ
can be reduced in any order, so we can assume

that for all individual diagrams they are reduced in the same fixed order.

Suppose now that (D, R) is a self-referential redex. Then by lemma 5.2.34 or

by case 2(c) of lemma 5.2.35 the lemma holds for D′′
1 (again, for both cases). Then,

as in the previous case, we combine the individual diagrams into the diagram for D′
1.

Note that in this case the order of reduction of the sequence
(D,R)/(G,R̃)

−−→∗

γ
is fixed (the

self-referential redex in this sequence is reduced last).

Now we show the dual property 4.6.2 (elementary project diagram).

Before we can prove it, let us show some properties of substitution which we

are going to use in the proofs. The essence of these properties is that a non-evaluation

substitution step can not create an evaluation redex (either a term, or a substitution

redex) that has not existed in the original term. The property is the converse of the

one stated in lemma 5.1.13: the lemma below explicitly restricts the substitution to

be a non-evaluation step, however one may notice that the only substitution possible

into a term of the form E{R} containing a label is a non-evaluation substitution,

since such a label may appear only in a non-evaluation context.
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Lemma 5.2.37. 1. If C 6∈ EvalContextT and C{V } is a term redex, then C{l}

is a term redex.

2. If A{V,2} ∈ EvalContextT and A{2, R} 6∈ EvalContextT (or, respectively,

A{2, V } ∈ EvalContextT and A{R,2} 6∈ EvalContextT ), then A{l,2} ∈

EvalContextT (respectively, A{2, l} ∈ EvalContextT ).

3. If A{V,2} ∈ EvalContextT and A{2, l1} 6∈ EvalContextT (or, respectively,

A{2, V } ∈ EvalContextT and A{l1,2} 6∈ EvalContextT ), then A{l,2} ∈

EvalContextT (respectively, A{2, l} ∈ EvalContextT ), where l1 may or may

not be the same as l.

Proof. 1. A term redex R is either c1 op c2, where both constants occur in eval-

uation context, so R 6= C{V }, where C 6∈ EvalContextT , or λx.M @ V ,

where the only non-evaluation contexts occur inside V or inside M , so the

claim clearly holds.

2. By induction on the structure of an evaluation context.

3. Same as the previous case.

Similarly to the proof of the property 4.6.1 (lemma 5.2.36 above), we first show

the property for 4 different cases of kinds, positions, and markings of the redexes.

The following 4 lemmas correspond to these cases.

Remark 5.2.38. In the proofs of the auxiliary lemmas for elementary project dia-

grams (lemmas 5.2.32–5.2.35) we have used the notion of independent redexes (def-

inition 5.2.5), in particular some of the cases considered in the proofs where the
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cases when the evaluation redex (G, R̃) was independent from the non-evaluation

redex (D, R) (see lemma 5.2.36). This definition is not applicable in the case of

lemma 5.2.43 (elementary lift diagram), since the non-evaluation redex occurs in the

initial record D′
1, but the evaluation redex occurs in the record D′

2 obtained from D′
1

by reducing the non-evaluation redex. We extend the notion of independent redexes

to this case as follows: we say that (G, R̃) and (D, R) are independent if (G, R̃) is

independent from (D, Q) in D′
2 (as a subterm, see definition 5.2.5), where R Ã Q

if R is a term redex, and Q = V if R = l is a substitution redex. The notion is

well-defined, since (G, R̃) is an evaluation redex, and therefore can not be contained

in the value being substituted.

We also say that (G, R̃) is independent from (D′, R′) if it is independent from

its residual(s) in D2.

Lemma 5.2.39. Suppose (D, R) and (D′, R′) are not self-referential, marked(D′
1) =

{(D, R), (D′, R′)}, and D′
1 ◦−

(D,R)−−−→
γ

D′
2 =

(G,R̃)
==⇒ D′

4, then there exists D′
3 such that

D′
1,=

(G′,R̃′)
===⇒ D′

3

(D,R)/(G′,R̃′)

−−→∗

γ
D′

4 such that (G, R̃) = (G′, R̃′)/(D, R). If the sequence

(D,R)/(G′,R̃′)

−−→∗

γ
consists of more than one step, then for any such reduction D′

3,
(D,R)/(G′,R̃′)

−−→∗

γ

D′
4.

Proof. Since D′
1 ∈ dom(γ), the two marked redexes are of the same kind, and if they

are substitution redexes, then R = R′ = l1. Let l, l
′, l̃ be the labels of the components

containing (D, R), (D′, R′), and (G, R̃), respectively. We have the following cases:

1. All three redexes are term redexes. If all three redexes occur in different terms,

the claim of the lemma clearly holds. If the three redexes all occur in the same

term, then the claim holds by lemma 5.1.25. If l = l̃ 6= l′, then the claim holds

by lemma 5.1.22 (clearly (D′, R′), which occurs not in the same component
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where the other two redexes occur, has a single residual on both reduction

paths). If l = l′ 6= l̃ or l̃ = l′ 6= l, then (D, R) and (G, R̃) are independent (see

remark 5.2.38), and clearly the claim of the lemma holds.

2. The marked redexes are term redexes, and the evaluation redex is a substitution

redex. Let R̃ = l1. Since (G, l1) is an evaluation redex, l1 6= l̃. We have the

following subcases:

(a) Among the 4 labels l, l′, l1, and l̃, no two are equal. Then the claim of the

lemma clearly holds.

(b) l1 6∈ {l, l
′}. Then

D′
2 = [l̃ 7→ E{l1}, l1 7→ V, . . . ].

By lemma 5.1.21

D′
1 = [l̃ 7→ E

′{l1}, l1 7→ V, . . . ].

Suppose l = l′ = l̃, i.e. both marked redexes occur in the same component

as (G, l1) and the marked redexes are independent from each other. By

lemma 5.2.31 the substitution occurrence of l1 is not contained in R or

R′, i.e. E
′{l1} = A{l1, R, R

′}. Recall that in the proofs in this section we

write A{l1, R, R
′} to mean that the context A contains the three terms in

some, not necessarily the specified, order. Then the following reductions

prove the claim of the lemma:

[l̃ 7→ A{l1, R, R
′}, l1 7→ V, . . . ] ==⇒ [l̃ 7→ A{V,R,R′}, l1 7→ V, . . . ] →

γ

[l̃ 7→ A{V,Q,R′}, l1 7→ V, . . . ],

[l̃ 7→ A{l1, R, R
′}, l1 7→ V, . . . ] ◦−−→

γ
[l̃ 7→ A{l1, Q,R

′}, l1 7→ V, . . . ] ==⇒

[l̃ 7→ A{V,Q,R′}, l1 7→ V, . . . ].
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The cases when l̃ = l = l′ and R contains R′ or R′ contains R are similar.

The cases when l = l̃, l′ 6= l̃, or l′ = l̃, l 6= l̃, or l = l′ 6= l̃ are also similar,

but simpler.

(c) l̃ 6∈ {l, l′}. Note that the case when l = l′ 6= l1 has been considered above.

The remaining subcases are l = l′ = l1, l = l1 6= l′, and l′ = l1 6= l. As

above, we consider the case l = l′ = l1 in detail, the other two cases are

similar, but simpler. We have the following possibilities:

I. R,R′ are independent in D1. In this case:

D′
2 = [l̃ 7→ E{l1}, l1 7→ λy.A{Q,R′},

where RÃT Q. Then

D′
1 = [l̃ 7→ E{l1}, l1 7→ λy.A{R,R′},

and the reduction in case 2(c)I of the proof of lemma 5.2.32 proves the

claim. Note that the component bound to l1 in D′
1 is a value, therefore

the substitution is possible.

II. R contains R′. Then

D2 = [l̃ 7→ E{l1}, l1 7→ λy.A{Q},

where Q contains R′, possibly several copies if R′ is contained in the

operand of R, and therefore is duplicated. Again the reduction in the

respective case (case 2(c)II) of lemma 5.2.32 proves the claim.

III. R′ contains R. The case is similar to the previous case and to case
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2(c)III of lemma 5.2.32.

(d) l = l̃, l′ = l1. As in case (a) of this proof, the substitution redex l1 in D2 is

independent from the result of reduction of R by lemma 5.2.31. Therefore

D′
1 = [l̃ 7→ A{l1, R}, l1 7→ λx.B{R′}],

and the claim follows by the reduction.

(e) l′ = l̃, l = l1. Then

D′
1 = [l̃ 7→ A{l1, R

′}, l1 7→ λx.B{R}].

Note that since l1 is bound to a value containing the result of reduction

of a non-evaluation redex, this component is a λ-abstraction in D′
2, and

therefore in D′
1.

3. The marked redexes are substitution redexes, and the evaluation redex is a

term redex. Let R = R′ = l1 (since the initial record is in dom(γ), it must be

the case that R and R′ are the same label). By the condition of the lemma

none of the redexes is self-referential, therefore l 6= l1, l
′ 6= l1. It also must be

the case that l1 6= l̃, since l1 is bound to a value in D′
1, and therefore in D′

2,

and l̃ is bound to an evaluatable term in D′
2. As in the previous case, let us

assume that l = l′ = l̃. There are the following possibilities:

• The evaluation redex is independent from both substitution redexes. Then

D′
2 = [l̃ 7→ A{R̃, V, l1}, l1 7→ V, . . . ].

By lemma 5.2.37 A{2, l1, l1} ∈ EvalContextT , and it is easy to check
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that the claim of the lemma holds. No duplication of redexes occurs in

this case.

• Both the marked occurrence of l1 of the redex R′ and the value V which

is the result of the non-evaluation substitution redex occur in the operand

of R̃. Then

D′
2 = [l̃ 7→ E{(λx.A{x, . . . , x}) @ λy.B{V, l1}}, l1 7→ V, . . . ].

The occurrence of V here is under a λ, i.e. in a non-evaluation context,

and therefore by (λx.A{x, . . . , x}) @ λy.B{l1, l1} is a redex by part 1 of

lemma 5.2.37. The rest of the claim follows by the reduction in the proof

of the analogous case of lemma 5.2.32.

• The remaining cases (both R and R′ occur in the operator part of R̃, or

when one of the two marked redexes occurs in the operand, and the other

in the operator) are similar.

The other cases (l = l′ 6= l̃, l = l̃ 6= l′, l′ = l̃ 6= l, and the case when all the

three labels are distinct) are similar.

4. All three redexes are substitution redexes, where R̃ = l2 6= l1. In this case

l̃ 6= l2, since R̃ is an evaluation redex. As in case 3, l1 6∈ {l, l
′, l̃}. As in the

proof of lemma 5.2.32, we have the following subcases:

(a) All 5 labels are distinct, then the lemma trivially holds.

(b) l = l′ = l̃. Then

D′
2 = [l̃ 7→ A{l2, V1, l1}, l1 7→ V1, l2 7→ V2, . . . ].
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The label l2 occurs independently from V1 in the component bound to l̃,

since l2 must occur in an evaluation context, and therefore can not occur

inside a value4. By lemma 5.2.37 A{l2, l1, l1} ∈ EvalContextT , and the

claim of the lemma holds.

(c) l = l′ = l2. Then

D′
2 = [l̃ 7→ E{l2}, l2 7→ λx.C{V1, l1}, l1 7→ V1, . . . ].

In this case

D′
1 = [l̃ 7→ E{l2}, l2 7→ λx.C{l1, l1}, l1 7→ V1, . . . ],

and the claim clearly holds.

(d) l = l′, l 6= l̃, l 6= l2. The two marked redexes are independent from both

the evaluation redex and the value being substituted into it. The claim of

the lemma clearly holds.

(e) l = l̃, l′ = l2. Then

D′
2 = [l̃ 7→ A{l2, V1}, l2 7→ λx.B{l1}, l1 7→ V1, . . . ].

Similarly to the case (b), l2 is independent from V1 in the component

bound to l̃. By lemma 5.2.37 A{2, l1} ∈ EvalContextT , and again it is

easy to check that the claim holds.

(f) l = l̃, l′ 6= l2, l
′ 6= l̃. Similar to the previous case.

4Note that even if labels were values, V1 still could not have been equal to l2, since the substitution
D′

1 ◦−−→ D′
2 is a non-evaluation step, but l2 must occur in an evaluation context in D′

2.
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(g) l = l2, l
′ = l̃. In this case

D′
2 = [l̃ 7→ A{l2, l1}, l2 7→ λx.B{V1}, l1 7→ V1, . . . ].

Again, the claim of the lemma clearly holds.

(h) l = l2, l
′ 6= l2, l

′ 6= l̃. Similar to the previous case.

5. All the three redexes are substitution redexes, R = R′ = R̃ = l1. R̃ can not be

marked by the condition of the lemma (only the other two redexes are marked).

Similarly to the previous case, l1 6∈ {l, l
′, l̃}. Therefore no redex duplication is

possible, and the claim of the lemma holds in this case.

Lemma 5.2.40. Let (D′, R′) be a self-referential redex. Suppose marked(D′
1) =

{(D, R), (D′, R′)}. If D′
1 ◦−

(D,R)−−−→
γ

D′
2 =

(G,R̃)
==⇒ D′

4, then there exists D′
3 such that D′

1

=
(G′,R̃′)
===⇒ D′

3

(D,R)/(G′,R̃′)

−−→∗

γ
D′

4 such that (G, R̃) = (G′, R̃′)/(D, R). If the sequence
(D,R)/(G′,R̃′)

−−→∗

γ

consists of more than one step, then for any such reduction D′
3,

(D,R)/(G′,R̃′)

−−→∗

γ
D′

4.

Proof. Let l, l1, l̃ be the labels of the components where (D′, l), (D, l), and (G′, R̃′)

occur, respectively. Note that l̃ 6= l, since (G′, R̃′) is an evaluation redex, and l1 6= l,

since there may be at most one marked self-referential redex. We have the following

subcases:

1. R̃ is a term redex. If l1 6= l̃, then the evaluation redex is independent from

both substitution redexes, and the claim of the lemma clearly holds. If l1 = l̃,

then we have one of the following:

• R̃ is independent from the marked occurrence of l. The case is similar to
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the case when l1 6= l̃. By lemma 5.2.37 R̃ occurs in an evaluation context

in D′
1.

• The result of the substitution of l occurs in R̃.

The case when R̃ is of the form c1 op c2 is impossible, since then either c1

or c2 must be the result of the substitution, but the component bound to

l is a λ-abstraction, not a constant, since it contains an occurrence of l.

If R̃ is an application and the result of the substitution occurs in its

operator, then we have

D′
2 = [l 7→ λx.C{l}, l̃ 7→ E{(λy.A{λx.C{l}, y, . . . , y}) @ V }, . . . ],

D′
1 = [l 7→ λx.C{l}, l̃ 7→ E{(λy.A{l, y, . . . , y}) @ V }, . . . ].

Note that in l occurs unmarked in the component bound to l̃ in D2, since

the non-evaluation step is a γ-development . The claim easily follows,

similarly to the respective case of lemma 5.2.33.

If R̃ is an application and the result of the substitution occurs in its

operand, then

D′
2 = [l 7→ λx.C{l}, l̃ 7→ E{(λy.A{y, . . . , y}) @ λz.B{λx.C{l}}}, . . . ],

D′
1 = [l 7→ λx.C{l}, l̃ 7→ E{(λy.A{y, . . . , y}) @ λz.B{l}}, . . . ].

The claim easily follows.

2. R̃ = l2 6= l is a substitution redex. R̃ is an evaluation redex, therefore l̃ 6= l2.

We have the following possibilities:

• l1 6= l2, l1 6= l̃. In this case the three redexes occur in different components,

and the claim of the lemma clearly holds.
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• l1 = l2, i.e. the non-evaluation redex occurs in the value being substituted

by the evaluation step. In this case

D′
2 = [l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ A{λx.C{l}}, . . . ].

Then A 6= 2, since the γ-development step is a non-evaluation step. Note

that l1 must be bound to a value for R̃ to be a redex in D2, so A = λy.B,

and

D′
1 = [l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.B{l}, . . . ].

The rest of the claim follows from the reduction in the respective case of

lemma 5.2.33.

• l1 = l̃. Then

D′
2 = [l 7→ λx.C{l}, l̃ 7→ A{l2, λx.C{l}}, . . . ].

Similarly to the case 4(b) of lemma 5.2.39, the label l2 occurs indepen-

dently from λx.C{l} in the component bound to l̃, since l2 must occur

in an evaluation context, and therefore can not occur under a λ. By

lemma 5.2.37 A{2, l} ∈ EvalContextT . The rest of the claim easily

follows.

3. R̃ = l is a substitution redex. This occurrence of l is not marked, since by the

condition of the lemma only the other two redexes are marked.

If l1 = l̃, then

D′
2 = [l 7→ λx.C{l}, l̃ 7→ A{l, λx.C{l}}, . . . ].
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Similarly to the previous case, l is independent from λx.C{l} in the compo-

nent bound to l̃. The rest of the proof is similar to the respective case of

lemma 5.2.33.

The case when l1 6= l̃ is similar.

Lemma 5.2.41. Let (D, R) be a self-referential redex. Suppose that marked(D ′
1) =

{(D, R), (D′, R′)}. If D′
1 ◦−

(D,R)−−−→
γ

D′
2 =

(G,R̃)
==⇒ D′

4, then there exists D′
3 such that D′

1

=
(G′,R̃′)
===⇒ D′

3

(D,R)/(G′,R̃′)

−−→∗

γ
D′

4 such that (G, R̃) = (G′, R̃′)/(D, R). The sequence
(D,R)/(G′,R̃′)

−−→∗

γ

consists either of a single step, or of two steps, where the self-referential residual of

(D, R) is reduced second.

Proof. Let l, l′, and l̃ denotes labels of the components where (D, l), (D′, l), and (G, R̃)

occur, respectively. Similarly to the previous lemma 5.2.40, l 6= l′, l 6= l̃. We have 3

cases:

1. R̃ is a term redex. Suppose l′ = l̃. We have the following possibilities:

(a) R̃ and the marked occurrence of l are independent in the component bound

to l̃. Then

D′
2 = [l 7→ λx.C{λx.C{l}}, l̃ 7→ A{R̃, l}, . . . ].

Then

D′
1 = [l 7→ λx.C{l}, l̃ 7→ A{R̃, l}, . . . ],

and the rest of the proof is the same as in the respective case of lemma 5.2.34.

(b) The marked l occurs in the operator of R̃. The case is similar to the

previous one.
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(c) The marked l occurs in the operand of R̃. The case is similar to the

previous one.

If l′ 6= l̃, the case is also similar to the previous ones.

2. R̃ = l1 6= l is a substitution redex. If l′ = l1, then

D′
2 = [l 7→ λx.C{λx.C{l}}, l̃ 7→ E{l1}, l1 7→ λy.A{l}, . . . ]

D′
1 = [l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.A{l}, . . . ].

The claim easily follows.

If l′ = l̃, then

D′
2 = [l 7→ λx.C{λx.C{l}}, l̃ 7→ A{l1, l}, l1 7→ V, . . . ].

The case is similar to the case when l′ = l1, and so is the case when l′ 6∈ {l1, l̃}.

3. R̃ = l. By the condition of the lemma this occurrence of l is unmarked, since

only the other two redexes are marked.

Suppose l′ 6= l̃. Then

D′
2 = [l 7→ λx.C{λx.C{l}}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ],

and the reduction given in the case 3 of lemma 5.2.34 proves the claim. Note

that the self-referential redex gets duplicated by the evaluation step D′
1 ==⇒ D′

3,

and the reduction D′
3 −−→

∗

γ
D′

4 first reduces the copy of the redex in the compo-

nent bound to l̃, and then the original self-referential redex (in the component

bound to l).

The case when l′ = l̃ is analogous.
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Lemma 5.2.42. Let {(D, R), (D′, R′)}∩F̃ = ∅, marked(D′
1) = {(D, R), (D

′, R′)}∪F̃ ,

and marked(D′
2) = F ∪ F ′ ∪ {(G, R̃)}. Suppose D′

1 ◦−
(D,R)−−−→
γ

D′
2 =

(G,R̃)
==⇒ D′

4, where

F, F ′ are the sets of marked residuals of (D, R), (D′, R′), respectively. Then F̃ =

{(G′, R̃′)} such that (G, R̃) = (G′, R̃′)/(D, R), and there exists D3 such that D′′
1

=
(G′,R̃′)
===⇒ D′

3

(D,R)/(G′,R̃′)

−−→∗

γ
D′

4, where marked(D
′′
1) = {(D, R), (D

′, R′)}, |D′′
1 | = |D

′
1|

If (D, R) is a self-referential redex, then its self-referential residual is reduced

last in the two-step sequence
(D,R)/(G′,R̃′)

−−→∗

γ
. Otherwise the order of reductions in the

sequence
(D,R)/(G′,R̃′)

−−→∗

γ
does not matter.

Proof. A marked redex can not be a residual of a non-marked one, therefore F̃ 6= ∅.

By lemma 5.2.13 we have the following two cases:

1. All the marked redexes are term redexes. Let l1, l
′, l̃ be the labels of the com-

ponents where the redexes (D, R), (D′, R′), and (G, R̃) occur, respectively.

If l̃ 6= l1, then the reduction of the non-evaluation redex (D, R) does not affect

the evaluation redex (G, R̃). The component bound to l̃ does not change, so

F̃ = {(G′, R̃)}, and (G, R̃) = (G′, R̃)/(D, R). The evaluation redex is marked

in D1 since it is marked in D2. The rest of the claim follows similarly to case

1 of the proof of lemma 5.2.35.

If l̃ = l1, then the claim follows from lemma 5.1.25. In this case when l′ 6= l̃

(D′, R′) has one residual (itself), and when we apply lemma 5.1.25, we don’t

consider (D′, R′) as a marked redex, since it occurs in a different component.

If l′ = l̃, then we consider all three marked redexes in the application of

lemma 5.1.25.
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2. All the marked redexes are substitution redexes with the same label l. Let

l1, l
′, l̃ be as in case 1. Note that l 6= l̃, since (G, R̃) is an evaluation redex. We

have the following subcases:

(a) l1 6= l, l′ 6= l, i.e. none of the redexes is self-referential. Suppose that

l1 = l′ = l̃, i.e. all redexes occur in the same component. Then

D′
2 = [l̃ 7→ A{l, V, l}, l 7→ V, . . . ],

where the first marked occurrence of l corresponds to the redex (G, R̃),

and the second to the redex (D′, R′). Note that the occurrence of l cor-

responding to the evaluation redex does not occur in V because it occurs

in an evaluation context, and the one corresponding to (D′, R′) does not

occur in V by the assumption that none of the redexes is self-referential.

Then

D′
1 = [l̃ 7→ A{l, l, l}, l 7→ V, . . . ],

by lemma 5.2.37 A{2, l, l} ∈ EvalContextT , and the claim of the lemma

easily follows.

The cases when the three redexes occur in at least two different compo-

nents are similar.

(b) l′ = l, i.e. the redex (D′, R′) is self-referential. Suppose l̃ = l1, then

D′
2 = [l 7→ λx.C{l}, l̃ 7→ A{l, λx.C{l}}, . . . ],

D′
1 = [l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ].

As in the case 4(b) of the proof of lemma 5.2.39, the marked occurrence of

l in the component bound to l̃ in D′
2 is independent from λx.C{l}, since it
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occurs in an evaluation context. The rest of the proof is by the reduction

in the case 2(b) of the proof of lemma 5.2.35. The case when the two

non-self-referential redexes occur in different components is analogous.

(c) l1 = l, i.e. (D, R) is self-referential. If l̃ = l′, we have:

D′
2 = [l 7→ λx.C{λx.C{l}}, l̃ 7→ A{l, l}, . . . ],

D′
1 = [l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ].

The reduction in the case 2(c) of the proof of lemma 5.2.35. The case when

the redex (D′, R′) occurs not in the same component as the evaluation

redex is analogous.

Lemma 5.2.43 (Elementary Lift Diagram for C). If D′
1 ◦−

(D,R)−−−→
γ

D′
2 =

(G,R̃)
==⇒ D′

4,

then there exists D′
3 such that D′

1 =
(G′,R̃′)
===⇒ D′

3

(D,R)/(G′,R̃′)

−−→∗

γ
D′

4 such that (G, R̃) =

(G′, R̃′)/(D, R).

Proof. The proof is by lemmas 5.2.39, 5.2.40, 5.2.41, and 5.2.42 analogous to the

proof of lemma 5.2.36.

It remains to show standardization of complete γ-evelopments. It follows

from the lemmas 5.2.34 and 5.2.35 for the elementary project diagram and from

lemmas 5.2.41 and 5.2.42 for the elementary lift diagram that when the self-referential

redex is duplicated, the elementary diagrams commute if the self-referential copy

of the redex is reduced after the non-self-referential one. For instance, if the two

residuals of the self-referential redex in case 3 of lemma 5.2.41 are reduced in the
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other order, the diagram does not commute:

[l 7→ λx.C{l}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ==⇒

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λx.C{λx.C{l}}}, l′ 7→ A{l}, . . . ],

but the sequence below leads to a record different from the one above:

[l 7→ λx.C{l}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ E{λx.C{l}}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λx.C{l}}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λx.C{λx.C{λx.C{l}}}}, l′ 7→ A{l}, . . . ].

Note that it is not only the sets of marked redexes, but the records themselves are

different.

Lemma 5.2.44. If D′
1 ◦−

(D,R)−−−→
γ

D′
2 =

(G,R̃)
==⇒
γ

D′
4, where (D, R) is not self-referential, then

there exists D′
3 such that D

′
1 ==⇒

γ
D′

3 −−→
∗

γ
D′

4.

Note that when (D, R) is a self-referential redex, then the claim of the above

lemma does not hold. For instance, consider:

[l 7→ λx.l, l′ 7→ l] ◦−−→
γ

[l 7→ λx.λx.l, l′ 7→ l] ==⇒
γ

[l 7→ λx.λx.l, l′ 7→ λx.λx.l], but

[l 7→ λx.l, l′ 7→ l] ◦−−→
γ

[l 7→ λx.l, l′ 7→ λx.l] ==⇒
γ

[l 7→ λx.λx.l, l′ 7→ λx.l]
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5.2.6 Weak Standardization of γ-developments in C

Lemma 5.2.45 (Weak Standardization of γ-developments in C). C has weak

standardization of γ-developments, as defined in definition 4.5.7. More precisely, for

every D′
1, D

′
2, D

′′
1 , D

′′
2 such that the two evaluation sequences Se

1 : D′
1 ==⇒∗

∪
D′′

1 and

S2 : D′
2 ==⇒∗ D′′

2 are lockstep equivalent, there exists a record D′ such that D′′
1 ==⇒∗

γ

D′ ◦−−→∗

cγ
D′′

2 .

Proof. By definition of lockstep equivalent reductions (definition 4.5.6) marked(D′
1) =

{(D, R)} for some non-evaluation redex (D, R). We have the following two cases:

Case 1. If (D, R) is not self-referential, then lemma 5.2.44 is applicable to any

two marked redexes (since by lemma 5.2.13 all marked residuals of (D, R) are also

non-self-referential). Since the γ-developments are bounded (by lemma 5.2.14), by

lemma 4.3.3 we can show strong standardization of γ-developments (definition 4.5.5).

Case 2. If (D, R) is self-referential, then the proof is by induction on the

number of steps in the sequence D′
1 ==⇒∗ D′′

1 . Let n denote this number. We want

to prove that for every such D′′
1 and the corresponding D′′

2 there exists a standard

complete γ-development D′′
1 ==⇒∗

γ
D′ ◦−−→∗

cγ
D′′

2 such that the self-referential redex is

reduced last.

Base case (n = 0). Then the complete γ-development consists of a single step

(the step reducing (D, R)), so it is trivially standard, and the self-referential redex

(D, R) is reduced last.

Induction Step. Suppose D′
1 ==⇒∗

∪
D′′

1 ==⇒ D′′′
1 , D

′
2 ==⇒∗ D′′

2 . Note that

marked(D′
2) = marked(D′′

2) = ∅.

(D2, ∅) ==⇒
∗ (D′

4, ∅), the two evaluation sequences are related by the elemen-

tary diagrams, and for (D′
3, F

′
3) and (D′

4, ∅) the claim of the lemma holds. By the

condition of the lemma there exists an evaluation sequence related by elementary di-
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agrams to the sequence (D1, {(D, R)}) ==⇒
∗ (D′

3, F
′
3) ==⇒ (D3, F3). This implies that

there exist (D̃3, F̃3) and (D̃′
3, F̃

′
3) such that (D′

3, F
′
3) ==⇒

∗

γ
(D̃′

3, F̃
′
3) =

0/1
=⇒ (D̃3, F̃3) and

(D3, F3) ==⇒
∗

γ
(D̃3, F̃3), and we have one of the two possibilities:

• (D̃′
3, F̃

′
3) =

0/1
=⇒ (D̃3, F̃3) is a 0-step reduction. Since the two evaluation sequences

are related by elementary diagrams, (D̃′
3, F̃

′
3) ◦−−→

∗

γ
(D′

4, ∅). By the induction

hypothesis the last redex reduced in the non-evaluation γ-development sequence

is the self-referential residual of (D, R), therefore the sequence (D3, F3) ==⇒∗

γ

(D̃3, F̃3) ◦−−→
∗

γ
(D′

4, ∅) satisfies the claim of the lemma.

• (D̃′
3, F̃

′
3) =

0/1
=⇒ (D̃3, F̃3) is a 1-step reduction. The two evaluation sequences

are related by elementary diagrams, therefore there exists (D4, ∅) such that

(D̃′
3, F̃3) ◦−−→

∗

γ
(D′

4, ∅) ==⇒ (D4, ∅), (D̃3, F̃3) −−→
∗

γ
(D4, ∅), and the reductions are

constructed from the elementary diagrams. By the inductive hypothesis the

last redex in the sequence (D̃′
3, F̃3) ◦−−→

∗

γ
(D′

4, ∅) is the self-referential residual of

(D, R). Let (D′, R′) denote this redex. By lemma 5.2.13 the other redexes re-

duced in this sequence are not self-referential. Since the sequence (D̃3, F̃3) −−→
∗

γ

(D4, ∅) is constructed from (D̃′
3, F̃

′
3) ◦−−→

∗

γ
(D′

4, ∅) via the elementary diagrams,

there exist (D′′, F ′′) and (D′′′, F ′′′) such that (D̃′
3, F̃

′
3) ◦−−→

∗

γ
(D′′, F ′′) ◦−(D

′,R′)−−−→
γ

(D′
4, ∅), (D̃3, F̃3) −−→

∗

γ
(D′′′, F ′′′) −−→∗

γ
(D4, ∅), and (D′′, F ′′) ==⇒ (D′′′, F ′′′). Let

(D′′, R′′) be the self-referential residual of (D′, R′). By lemma 5.2.34 (D′′, R′′)

is reduced last in the sequence (D′′′, F ′′′) −−→∗

γ
(D̂, F̂ ) ◦−(D

′′,R′′)−−−−→
γ

(D4, ∅). A

self-referential redex is a non-evaluation redex, therefore the step ◦−(D
′′,R′′)−−−−→
γ

is

a non-evaluation step. Since no other redexes in the sequence (D̃3, F̃3) −−→
∗

γ

(D′′′, F ′′′) −−→∗

γ
(D̂, F̂ ) are self-referential, by lemma 5.2.44 there exists (D̂′, F̂ ′)

such that (D̃3, F̃3) ==⇒∗

γ
(D̂′, F̂ ′) ◦−−→∗

γ
(D̂, F̂ ), which proves the claim of the

lemma.
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5.2.7 Class Preservation and Results

Recall that classification of records is defined as

ClC(D) =































evaluatableC if there exists D′ such that D ==⇒C D
′

[li
n
7→
i=1

ClT (Vi)] if D = [li
n
7→
i=1

Vi],

errorC otherwise

We omit an obvious proof of the following lemma:

Lemma 5.2.46 (Class Preservation of C). If D1 ◦−−→C D2, then ClC(D1) =

ClC(D2).

We can also show class preservation for the classification of the core record

calculus defined in [MT00]:

ClC(D) = [li
n
7→
i=1

ClT (Mi)], where D = [li
n
7→
i=1

Mi]. ([MT00] definition)

Theorem 5.2.47 (Computational Soundness of C). If D1 ↔C D2, then OutcomeC(D1) =

Outcome(D2).

Proof. By theorems 4.8.4 and 4.8.5 C has lift and project properties, since it satisfies

the elementary diagrams (lemmas 5.2.36 and 5.2.43), has weak γ-confluence of eval-

uation (lemma 5.2.30), and weak standardization of γ-developments (lemma 5.2.45).

These results are shown for marked records, and by lemma 4.8.3 they hold for mod-

ules with no marked redexes. C also has confluence of evaluation (lemma 5.2.16) and

class preservation (lemma 5.2.46), therefore by theorem 3.4.5 it is computationally

sound.



Chapter 6

Overview of the Linking Calculus

6.1 Module and Linking Calculi

The linking calculus is built on top of the module calculus. The module calculus is

very similar to the calculus of records, with the following differences:

1. Unlike the record calculus, the module calculus has two kinds of labels: visible

ones and hidden ones. Visible labels represented exported and imported com-

ments of a module, they serve as wiring to facilitate “information exchange”

between modules. Hidden labels represent private components of modules.

Hidden components of one module are not accessible and not even visible to

any other module. We sometimes refer to the module calculus as the core

module calculus.

Terms of the linking calculus are called linking expressions. We use v to range

over the set Visible of visible labels, and h to range over Hidden – the set of

hiddens. We require that Visible ∩Hidden = ∅. The set of labels Label is

defined as Visible ∪Hidden.

In examples we use upper-case letters to range over visible labels, and lower-
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case letters to range over hidden ones. For instance, in the following module

the label A is visible, but a is hidden.

[A 7→ 2 + a, a 7→ 5]

While visible labels may appear not bound in a module, in which case we say

that they are imported, hidden labels must be bound. For instance, the first

of the two modules below is a valid module in the calculus, but the second one

is not because the hidden label b is not bound in the module:

[A 7→ a, a 7→ B]

[A 7→ a, a 7→ b]

2. In addition to being identified up to reordering of components, modules are

identified up to consistent renaming of hiddens throughout the module. For

instance, the following two modules are α-equivalent:

[A 7→ a, a 7→ b, b 7→ a]

[A 7→ c, c 7→ a, a 7→ c]

We also formalize the notion of α-renaming of variables in a term and identify

modules up to the term-level α-renaming of their components.

3. In the presence of hidden labels we define classification of modules in such a
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way that hidden labels are not observable in the module:

ClC(D) =































evaluatable if there exists D′ s.t. D ==⇒C D
′

[vi
n
7→
i=1

Cl(Vi)] if D = [vi
n
7→
i=1

Vi, hj
m
7→
j=1

V ′j ],

error otherwise

4. In one version of the module calculus we have introduced a garbage collection

operation which removes hidden bindings not referenced in the rest of the mod-

ule. This operation is a non-evaluation step in the calculus. A non-evaluation

step must not change the observable behavior of a module, therefore garbage

collection is restricted to removing hiddens bound to values.

The details of definition of the module calculus, of α-renaming at the term and at the

module level, and of definition and properties of the calculus with garbage collection

are given in [MT02].

6.2 Syntax of the Linking Calculus

The syntax for the linking calculus and definitions of its calculus reduction and

evaluation are given in figure 6.1. We use L to denote the linking calculus. In

particular, we use this symbol as a subscript for reductions in linking calculus.

In the definition of the linking calculus BL(D) stands for bound labels of a

module, i.e. those appearing on the left-hand side of a module binding. Imports(D)

stands for imported labels, i.e. those which are not bound in the module. As we

have mentioned earlier, hidden labels cannot be imported.

A linking expression and a linking context are defined in figure 6.1. We

introduce the following additional notations and definitions for linking expressions.
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I ∈ModIdent ::= module identifiers

L ∈ TermL ::= D | I | L1 ⊕ L2 | L[v
ren
←v′] | L{hide v}

| let I = L1 in L2

L ∈ ContextL,L ::= 2 | L⊕ L | L⊕ L | L[v
ren
←v′] | L{hide v}

| let I = L in L | let I = L in L

D ==⇒L D′, where D ==⇒C D
′ (mod-ev)

L{[ki
n
7→
i=1

Mi]⊕ [lj
m
7→
j=1

Nj ]} ==⇒L L{[ki
n
7→
i=1

Mi, lj
m
7→
j=1

Nj ]}, (link)

where [ki
n
7→
i=1

Mi], [lj
m
7→
j=1

Nj ] ∈ HTermC

and (∪ni=1ki) ∩ (∪
m
j=1lj) = ∅.

L{D[v
ren
←v′]} ==⇒L L{D[v := v′]}, (rename)

where v ∈ BL(D) implies v′ 6∈ BL(D).

L{D{hide v}} ==⇒L L{D[v := h]}, (hide)

where v 6∈ Imports(D), h 6∈ Hid(D).

L{let I = D in L} ==⇒L L{L[I := D]}, (let)

L{D} ◦−−→L L{D′}, where D −−→C D
′ (mod-nev)

and L 6= 2 or D ◦−−→C D
′

Figure 6.1: The linking calculus

A module identifier I is free in an expression L if it is not bound by a let. The set
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FMI(L) of free module identifiers of L is inductively defined as follows:

FMI(D) = ∅

FMI(I) = {I}

FMI(L1 ⊕ L2) = FMI(L1) ∪ FMI(L2)

FMI(L[v
ren
←v′]) = FMI(L)

FMI(L{hide v}) = FMI(L)

FMI(let I = L1 in L2) = FMI(L1) ∪ (FMI(L2) \ {I})

A linking expression L is well-formed if FMI(L) = ∅. In this presentation we assume

all top-level linking expressions to be well-formed (expressions that are in the scope

of a let may have free identifiers).

We define a substitution of a linking expression for a free identifier L[I := L′]

similarly to substitution M [x := N ] in the term calculus (see definition ??).

I[I := L] = L

I1[I := L] = I1 if I 6= I1

D[I := L] = D

L1 ⊕ L2[I := L] = L1[I := L]⊕ L2[I := L]

L1{hide v}[I := L] = (L1[I := L]){hide v}

L1[v
ren
←v′][I := L] = (L1[I := L])[v

ren
←v′]

(let I = L1 in L2)[I := L] = let I = L1[I := L] in L2

(let I1 = L1 in L2)[I := L] = let I1 = L1[I := L] in L2[I := L]

if I 6= I1 and I1 6∈ FMI(L) or I 6∈ FMI(L2)

(let I1 = L1 in L2)[I := L] = let I2 = L1[I := L] in L2[I1 := I2][I := L]

if I 6= I1, I1 ∈ FMI(L), I ∈ FMI(L2),

and I2 6∈ FMI(L) ∪ FMI(L2)
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The next section gives details of relations in the linking calculus.

6.3 Linking Relations

Intuitively, the linking of modulesD1 andD2, writtenD1⊕D2, takes the union of their

bindings. To avoid naming conflicts between both visible and hidden labels, BL(D1)

and BL(D2) must be disjoint1. The fact that the import labels of a module are non-

hidden prevents the components of one module from accessing hidden components

of the other one when they are linked.

The renaming operator renames a visible module label (an import or an ex-

port) to another visible label. The proviso “v ∈ BL(D) implies v ′ 6∈ BL(D)” guar-

antees that the resulting module is well-formed2, i.e. does not have two components

bound to the same label name. Renaming import and export labels is the way to

connect an exported component of one module to an import site in another.

Hiding renames a visible label to a fresh (i.e. not appearing in the mod-

ule) hidden. The choice of this hidden name does not matter when we consider

α-equivalence classes of modules. The restriction v 6∈ Imports(D) prevents renaming

an import to a hidden label.

The binding operator let I = L1 in L2 names the result of evaluating the

definition term L1 and uses the name within the body term L2. This models sit-

uations in which the same module is used multiple times in different contexts (see

examples below). In this presentation we require that the definition term L1 is first

evaluated to a module D, and then D is substituted into the body L2. This is con-

sistent with the call-by-value semantics of other reductions in our calculus (e.g. the

1The extension of linking to αL-equivalence classes introduced later in this section removes the
requirement that hidden labels of the two modules are disjoint.

2An attempt to rename one bound label in a module to another one causes a linking error.
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term reductions and substitution at the module level).

The definition of −−→L lifts core module reduction steps to the linking level.

The lifted core module reduction steps are only considered evaluation steps if they

are not surrounded by any link-level operators; this forces all link-level steps to be

performed first in a “link-time stage”, followed by a “run-time stage” of core module

steps.

The structure of a linking context allows the link-level operators to be evalu-

ated in any order, as we see in the examples below.

Example 6.3.1 (Evaluation of a Linking Expression). The example shows

reuse of a module via let, as well as linking, hiding, and module evaluation:

let A = [X 7→ 2] in (A⊕ [Y 7→ X + Z])⊕ ((A⊕ [Z 7→ X ∗ 5]){hide X}) ==⇒L

([X 7→ 2]⊕ [Y 7→ X + Z])⊕ (([X 7→ 2]⊕ [Z 7→ X ∗ 5]){hide X}) ==⇒∗
L

[X 7→ 2, Y 7→ X + Z]⊕ [h 7→ 2, Z 7→ h ∗ 5] ==⇒L

[X 7→ 2, Y 7→ X + Z, h 7→ 2, Z 7→ h ∗ 5] ==⇒∗
L

[X 7→ 2, Y 7→ 12, h 7→ 2, Z 7→ 10]

The first evaluation step reduces the let. The next 3 steps (shown as one ==⇒∗
L

sequence) perform two linking operations and hiding. The two (link) reductions

may be performed in any order. The hiding can be performed only after the linking

[X 7→ 2]⊕ [Z 7→ X ∗ 5], since the argument of hiding must be a module. Hiding

renames a visible label X to a new hidden label h. After this renaming has been

performed, the component is no longer accessible from outside of the module in which

it is defined. The final linking reduces the expression to a single module, and the

following ==⇒∗
L sequence evaluates the module to a module value (all components are

bound to values).
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We use the following abbreviation for a sequence of nested lets:

let I1 = L1 I2 = L2 . . . In = Ln in Ln+1

is syntactic sugar for

let I1 = L1 in (let I2 = L2 in . . . (let In = Ln in Ln+1) . . . ).

The next example shows possibilities of connecting module components via

renaming.

Example 6.3.2 (Connecting Module Components Via Renaming).

let A = [X 7→ 0]

B = [Y 7→ Z + 1]

C = A⊕ B

in C[Y
ren
←Y1][Z

ren
←X]⊕B[Z

ren
←Y1]

==⇒∗
L [X 7→ 0, Y1 7→ X + 1, Y 7→ Y1 + 1]

==⇒∗
L [X 7→ 0, Y1 7→ 1, Y 7→ 2].

Note that the first renaming applied to C renames an exported label, and the second

one (as well as the renaming of Z in B) renames an imported label.

Cases of ◦−−→L include an evaluation of a module in a non-empty linking context

and a non-evaluation step on a module in an empty context, as shown in the following

example:

Example 6.3.3 (Non-Evaluation Steps in L). Even though the substitution is

an evaluation step at the module level, it is a non-evaluation step at the linking level,
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since the module appears in a non-empty context:

[X 7→ 2, Z 7→ X + 3]⊕ [P 7→ X + Z] ◦−−→L [X 7→ 2, Z 7→ 2 + 3]⊕ [P 7→ X + Z]

A non-evaluation step on a module is a non-evaluation linking step even if the module

appears in an empty context:

[F 7→ λx.Y + 3, Y 7→ 2] ◦−−→L [F 7→ λx.2 + 3, Y 7→ 2].

6.4 Overview of α-renaming

As we have mentioned in section 6.1, we formalize α-renaming for term and module

calculus: α- renaming of bound variables in a term and renaming of hiddens in a

module. At the linking level we add α-renaming of module identifiers in linking

expressions to our list of α-renaming.

Each calculus level inherits α-renaming from the previous level. Linking ex-

pressions are identified up to all three α-renamings. However, the most interesting

and useful of the three α-renamings at the linking level is renaming of hiddens in

a module. By identifying modules up to renaming of hiddens we are able to define

linking of modules in such a way that it is independent of the particular names of

the hiddens in the two modules. The linking operation is defined on α-equivalence

classes of modules. Thus linking of two modules is well-defined as long as there is no

conflict between the names of the visible components of the two modules, regardless

of possible conflicts between names of hidden components of the modules.

This approach leads to defining classification of linking expressions not on
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individual expressions, but on α-equivalence classes of linking expressions. Classifi-

cation defined in this manner does not depend on names of hiddens in modules, so

conflicts in names of hiddens do not prevent linking of two modules. LαL
denotes the

α-equivalence class of a linking expression L. Note that Cl(D) is the classification of

a module D in the module calculus.

Cl(LαL
) =































evaluatable if there exists L′αL
s.t. LαL

==⇒L\α L
′
αL
,

Cl(D) if there exists D ∈ LαL
s.t. D is an ==⇒C normal form,

error otherwise.

The proviso “D is an ==⇒C normal form” in the second case of the definition is

necessary to guarantee that the classes are disjoint.

The class error captures the case when a linking expression never evaluates

to a module because it contains a ⊕ operation whose arguments export the same

names, for instance:

Cl([A 7→ 2 + 3]⊕ [A 7→ λx.x]) = error.

Another example of a linking error is an attempt to rename a bound label in a module

to another bound label, e.g.

Cl([A 7→ λx.x, B 7→ 2][A
ren
←B]) = error.

See [MT02] for more detailed discussion of the α-renaming issues.
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6.5 Results

Even though reductions in L are defined on α-equivalence classes of linking expres-

sions, as explained in the previous section, we state the respective results for concrete

linking expressions for simplicity. For details and for proofs of the results see [MT02].

The linking calculus inherits non-confluence from the module calculus, as

shown by the following example:

Example 6.5.1 (Non-confluence of Linking Calculus).

[A 7→ λx.B,B 7→ λx.A]⊕ [C 7→ 2] ◦−−→L

[A 7→ λx.λx.A,B 7→ λx.A]⊕ [C 7→ 2],

[A 7→ λx.B,B 7→ λx.A]⊕ [C 7→ 2] ◦−−→L

[A 7→ λx.B,B 7→ λx.λx.B]⊕ [C 7→ 2].

As in the record calculus, and consequently in the module, calculus, there is no

term both of these expressions reduce to. Note that, as in the record calculus, both

reductions are non-evaluation steps.

Despite the lack of confluence of −−→ , we are still able to show the following:

Theorem 6.5.2. ==⇒L is confluent.

We show that it cannot be the case that ==⇒L diverges on one path and leads

to a normal form on another.

Lemma 6.5.3. If L ==⇒∗
L EvalL(L), then there is no infinite sequence of ==⇒L steps

originating at L.

We show that every linking expression evaluates to a module, unless the eval-

uation encounters a linking error:
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Theorem 6.5.4 (Non-error Linking Expressions Evaluate to a Module). If

Outcome(L) 6= error, then there exists D such that L ==⇒∗
L D.

Since module evaluation steps are evaluation steps at the linking level only

if they are performed in an empty linking context, any evaluation sequence in L

performs all link-level steps first, followed by module level evaluation. We call this

property staging.

Theorem 6.5.5 (Staging). Given a sequence L1 =
S
=⇒

∗

L L2, there exists L
′ such that

L1 =
S1

=⇒
∗

L L′ =
S2

=⇒
∗

L L2, where S = S1;S2, S1 is a sequence of only link-level redexes,

and S2 is a sequence of only module-level ones.

We also show that L satisfies the lift, project, and the class preservation

properties, and therefore is computationally sound.

6.6 Example of Cross-Module Transformation

Our linking calculus is powerful enough to justify some cross-module transformations,

such as the cross-module lambda-splitting transformation below. Figure 6.2 presents

a sequence of steps justifying lambda-splitting in the calculus with garbage collection

which we briefly described in section 6.1 above. See [MT02] for the precise definition

and properties. In the figure, we assume that λy.M ′ is a closed abstraction. Since

the calculus with garbage collection is computationally sound, the sequence is a proof

that cross-module lambda-splitting is meaning preserving in the calculus.

This result is an encouraging sign that our calculus can rigorously prove mean-

ing preservation of some real-life transformations.
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[U 7→ λx.C{λy.M ′}]⊕ [X 7→ U @ N ]
↓ (linking)

[U 7→ λx.C{λy.M ′}, X 7→ U @ N ]
↑ (GC)

[U 7→ λx.C{λy.M ′}, h 7→ λy.M ′, X 7→ U @ N ]
↑ (subst)

[U 7→ λx.C{h}, h 7→ λy.M ′, X 7→ U @ N ]
↓ (subst)

[U 7→ λx.C{h}, h 7→ λy.M ′, X 7→ λx.C{h} @ N ]
↑ (hiding)

[U 7→ λx.C{Ue}, Ue 7→ λy.M ′, X 7→ λx.C{Ue} @ N ]{hide Ue}
↑ (linking)

([U 7→ λx.C{Ue}, Ue 7→ λy.M ′]⊕ [X 7→ λx.C{Ue} @ N ]){hide Ue}

Figure 6.2: A sequence of calculus steps proving that lambda-splitting is meaning
preserving in LGC .



Chapter 7

Related Work

7.1 Related Work on Computational Soundness

The approach has been introduced by Plotkin in [Plo75]. The paper proves computa-

tional soundness of the call-by-value and call-by-name λ-calculi with constants (the

calculi that we have introduced sections 2.2.1 and 2.2.2) via confluence, standardiza-

tion1, and, implicitly, class preservation. Since the calculus relation in both calculi

is compatibly closed (i.e. M −−→ N implies C{M} −−→ C{N} for any one-hole context

C), computational soundness implies observational soundness2 of the calculus: any

two terms equivalent in the calculus behave the same way in any context. Plotkin’s

framework differs slightly from ours in that semantics of terms is given via evalua-

tion by SECD machine. Another difference is that Plotkin’s definition of a standard

reduction sequence is given by induction on both the length of the sequence and the

structure of the term. The resulting sequences have the form M1 ==⇒∗ M2 ◦−−→
∗ M3

only when M3 (and therefore, M2) is a value, but not in general. However, the only

1Plotkin uses a somewhat different definition of standardization than the one given here – see
discussion below.

2“Observational soundness” is our term (see [MT00]), Plotkin referred to this property as “con-
sistency”.
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case when standardization is used in the classical computational soundness frame-

work is when the end term is a value, so this difference does not affect the proofs of

computational soundness.

Other well-known examples of traditional proofs of computational soundness

are the proofs for two similar versions of a call-by-need calculus: [AF97] and [MOW98].

Both papers define the evaluation relation and the calculus relation, and prove con-

fluence and standardization in order to justify program transformation. The latter

paper employs the technique of reductions in marked calculus and of developments

for the proof of standardization, which has many similarities to the techniques we use

for proving lift and project. Note that the need for explicit work with marked terms

and developments arises for the same reason as in the calculus of records: the calcu-

lus rules are not left-linear (see section 4.1). The non-left-linear rule in [MOW98] is

let x = V in C{x} −−→ let x = V in C{V } because of two references to x (cf. the

substitution rules in figure 2.4).

As far as we know, computational soundness has been proven only for conflu-

ent calculi. Such calculi include the call-by-value and the call-by-name λ-calculi, the

call-by-need calculi mentioned above, as well as the module calculi, such as [FRR00]

mentioned in section 7.3.

7.2 Related Proof Techniques

Classical frameworks for proving confluence and standardization rely, among other

properties, on left-linearity of the calculus rules, which does not hold in the calculus

of records. However, these frameworks give insight into various properties of the

calculus, such as parallel moves lemma and finiteness (or boundedness) of develop-

ments. In our definition of γ-developments we tried to adapt this intuition to the
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calculus of records, despite the lack of left-linearity and of finiteness, confluence, and

standardization of developments.

Huet and Levy in [HL91] present an elegant approach to proving confluence

and standardization in first-order term rewriting systems. In particular, they show

that reductions of all residuals of a redex (i.e. complete developments) form a sup-

semilattice structure of permutation classes of derivations (the basic block of these

diagrams is a parallel moves diagram like the one in figure 4.1). This result implies

both confluence and standardization of the system, where the notion of a “standard”

sequence is based on the notion of the “needed” redex. These results serve as a good

intuition behind reductions in a calculus with marked terms and standardization,

but do not directly generalize to higher-order systems, such as λ-calculi.

Barendregt in [Bar84] gives a proof of confluence and standardization of the

call-by-name λ-calculus without constants based on finiteness (or, more exactly,

boundedness – see section 4.2.3 for details) of complete developments, also using

the technique of reductions of marked terms. His definition of standardization is by

induction on a standard reduction sequence.

Felleisen and Friedman in [FF86] introduced the notion of evaluation context

which is used in the definition of an evaluation, or “needed”, redex.

Masako Takahashi in [Tak95] introduced the notion of parallel reductions

which captures and generalizes the inductive (with respect to the structure of the

term) nature of definition of complete developments. The resulting technique can

be applied to a variety of confluence and standardization proofs. Unfortunately, this

technique is not applicable to the calculus of records. Complete developments in

the calculus of records are non-confluent, not bound, and do not (in general) have

standardization. This makes it impossible to define parallel reductions in our record

calculus.
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Gonthier, Levy, and Mellies in [GLM92] develop an axiomatic approach to

standardization for general rewrite systems. However, their approach depends on

left-linearity of the rewrite rules. It also requires finiteness of developments, which in

general does not hold in the calculus of records. The paper summarizes the properties

of an evaluation redex which turn out to be the essential properties in our framework

as well: an evaluation redex may not be removed or duplicated by reduction of any

other redex, and it may not be created by reduction of a non-evaluation redex.

Wells and Muller in [WM00] give a framework for finding a standard order and

proving standardization for certain orthogonal combinatory reduction systems. The

paper also given an excellent overview of various definitions of standardization and

summarizes, via the notion of a “freezing” and a “frozen” redex, the essential prop-

erties of a standard sequence. Interestingly, our definition of standardization, which

is clearly sufficient for computational soundness proofs, abstracts over the structure

of the terms and of the concrete redexes reduced in the sequence, and requires only

that the sequence reduces all evaluation redexes before all the non-evaluation ones.

While our definition assumes that evaluation and non-evaluation steps are already

defined in the calculus, it significantly simplifies most known definitions of a standard

sequence.

Our work gives, as far as we know, the first concise definition of the class

preservation property: a non-evaluation step does not change the class of a term. This

definition summarizes many variations of this property used in literature. [Plo75]

shows that the classes of values and “evaluatables” are preserved by “non-evaluation”

steps 3.[AF97] define classification which distinguishes between “evaluatables”, an-

swers (a class of evaluation normal form), and “stuck” terms (corresponding to er-

rors in our terminology) and prove several lemmas analogous to most cases of class

3Plotkin uses a different terminology.
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preservation. [Bar84] also shows similar results with respect to the head reduction

(analogous to evaluation). [Tah00] defines classification of terms for MetaML using

the call-by-name model (Taha uses the term “workables” for what we call “evaluat-

ables”) and shows computational soundness of MetaML with respect to the big-step

operational semantics via confluence.

7.3 Module Calculi and Recursive Systems

Recently there has been a lot of work on module and linking systems, focusing on such

issues as: developing a formal system for modules and linking [Car97], sophisticated

type systems for modules [HL94, Ler94, Sha99, Rus99]; and the expressiveness of

module systems, e.g. handling features like recursive modules [FF98, DS98, CHP99,

AZ99], inheritance and mixins [DS96, DS98, AZ99, FRR00], and dynamic linking

[FF98, WV99, Dug01, HWC01].

Our work uses an untyped framework and focuses on computational soundness

as a tool for proving meaning preservation of transformations. Many formal systems

for recursion and modules define just the calculus relation: [AK97, WV99, AZ01].

The system of units in [FF98] defines the notion of reduction, but does not specify

contexts in which it can be applied. Such systems do not distinguish between program

evaluation and program transformations.

Most formal systems with recursions have a confluent calculus relation. The

systems [AK97, WV99] achieve confluence by avoiding cyclic substitution. Even

though confluence in our calculus fails in the same way as in the unrestricted system

in [AK97], our way of dealing with this problem is different. Instead of prohibiting

cyclic substitutions in the calculus, as it is done in [AK97, WV99], we allow such

substitutions in the calculus but, due to the call-by-value nature of the substitution,
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such steps are not evaluation steps in our calculus, since the only way to form a

substitution cycle in our calculus is by a substitution inside a value, which can only

be done by a non-evaluation step. This turns out to be sufficient for achieving our

goal of proving the computational soundness of the calculus. A different approach

is taken in [AB97], which addresses the lack of confluence for unfolding operations

on recursive terms by identifying such terms up to information content – i.e., a term

has a unique infinite normal form.

Other confluent module calculi include [AZ01] and [FRR00]. The latter pa-

per defines both small-step operational semantics and the calculus relation and is

computationally sound. The confluence in this calculus comes from the fact that the

entire module gets copied into each reference, so the non-confluence example of our

record calculus cannot be constructed.

Our calculus is able to express such features as module reuse (in our case, via

let), also expressed in [FF98, WV99, FRR00, AZ01], recursion within the module,

independence of the order of components, linking of two modules (these features are

also expressed in all of the above models), renaming of components (also in [AZ01]),

hiding and equivalence of modules up to α-renaming of hidden components (in all of

the above).

However, our calculus does not have two features that we consider an impor-

tant part of a module language: first-class modules ([FF98, WV99, FRR00]) and

dynamic linking ([FF98, WV99, Dug01, HWC01]). Adding these features without

breaking computational soundness is a challenging future work.



Chapter 8

Summary and Future Work

8.1 Summary

This work presents a new technique for proving computational soundness which is

capable of handling a non-confluent calculus. In addition to non-traditional features

related to non-confluence, the calculus of records studied in this work presents other

challenges, such as non-finiteness and non-confluence of developments and lack of

general standardization of developments. These challenges make it impossible to

adopt known techniques for proofs of properties similar to those we were interested

in. For instance, a well-known technique of developments and complete developments

could not be applied directly, or even with minor modifications, to the calculus of

records. We have developed a significantly new approach of γ-developments for our

proofs.

This presentation focuses on computational soundness aspects of our work.

Much more work has been done by the author in collaboration with Franklyn Tur-

bak on various aspects of meaning preservation. The work includes developing a

three-level calculus for reasoning about modules and linking, proving computational

194
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soundness at each of the three level of the calculus, studying issues of embedding

one calculus into another via contexts, studying α-renaming and other related issues.

The details of this other work are presented in [MT02].

8.2 Future Work

There are numerous directions in which this work can be extended. Below we list

the ones we are mostly interested in pursuing.

8.2.1 Applications to Other Non-confluent Calculi

We plan to explore possibilities of applying the proof technique of lift and project

to other non-confluent calculi. For instance, we are interested in exploring various

calculi with the letrec rule, such as the one in [AB97]. Such calculi are interesting

in themselves, but also as a model for programs with assignment and state. Since

assignments can form cycles in the store, one might want to handle the store by some

form of a letrec rule. Letrec-unfolding rules may be helpful for justifying program

transformations in such calculi. However, these rules are likely to break confluence.

Since it is possible to define evaluation in such calculi without the letrec-unfolding

rules, and to add the unfolding rules as non-evaluation steps, such calculi look like a

good potential application of our technique.

Non-confluent calculi with explicit substitution, in particular composition-free

calculi, such as the calculus presented in [DL01], are another potential application of

the new technique. Interestingly, the calculus mentioned above has the normalization

property for the leftmost and head reductions, which seem to be somewhat related to

the standardization property defined here, since the normalization requires that all

leftmost (respectively head) reductions are done first, before other calculus reduction.
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These properties gives us a hope that we might be able to prove computational

soundness of the calculus via our technique.

8.2.2 Integrating Program Analyses

Combining our technique with other program analyses, such as termination analysis,

is a promising direction of research.

One such analysis is termination analysis: if we can show by means of some

analysis that a term eventually evaluates to a value, then we can justify more transfor-

mations. For instance, we can perform a beta reduction (λx.M) @ N −−→M [x := N ]

if we can prove that N evaluates to a value (otherwise the beta reduction would be

potentially changing the outcome of the term, since N may diverge or evaluate to an

error, but may be unused M). Termination analysis would allow more possibilities

for garbage collection, since it will allow to remove unreferenced bindings which are

guaranteed to terminate.

8.2.3 Proving Other Cross-Module Transformations

We would like to extend the list of cross-module transformations which can be proven

to be meaning-preserving in the linking calculus that we have developed. As far as we

know, there is very little work done in formally proving cross-module transformations,

even those which are widely used in existing compilers. The example of cross-module

lambda-splitting transformation shows that our calculus is capable of representing

(and therefore proving) some fairly non-trivial transformations.
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8.2.4 Extending the Calculus

Another promising direction of future work is extending the calculus relation and,

if needed, the evaluation relation to represent more language features and more

transformations. Our proof of meaning-preservation of the garbage collection rule

(see [MT02]) is an example of how this could be accomplished. The rule has been

added to the existing calculus as a non-evaluation step.

[A 7→ B,B 7→ A] [A 7→ A,B 7→ A]

[A 7→ B,B 7→ B] ?

Figure 8.1: Labels as “values”: non-confluence.

At the term level, we can add constructs for if statement and loops to be able

to reason about loop unrolling and similar transformations.

At the module level, we can investigate adding a substitution of labels as

“values” into another component. For instance, the following step is currently not a

part of our calculus:

[A 7→ B,B 7→ C] −−→ [A 7→ C,B 7→ C]

Such a step may be added only as a non-evaluation step, since taking two of such

steps from the same term leads to non-confluence, see figure 8.1.

At the linking level, we would like to add such features as first class modules

and dynamic linking.
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8.2.5 Work on Classification

Studying various definitions of classification in a calculus is another interesting area

of research: switching to a more fine-grained classification equates fewer terms, and

therefore reduces the number of meaning-preserving transformations in the calculus.

Using a more coarse classification makes more transformations meaning-preserving.

We can think of a more refined classification as a subclassification of a more coarse

one. Two classifications of the same calculus may also be unrelated to each other.

We would like to study the dependency of the class of meaning-preserving

transformations on variations in classification, given fixed evaluation and non-evaluation

relations.

8.2.6 Evaluation vs. Non-evaluation Steps

A generalization of a previous item is a study of various ways of breaking a given cal-

culus relation into evaluation and non-evaluation steps and defining a classification

which satisfies the class preservation property. During our work with the linking cal-

culus we have explored many possibilities for evaluation and non-evaluation relations

and for classification before we found those for which the proofs would go through.

The process of finding just the right combination was largely a trial-and-error process.

Structuring and formalizing this process would make the lift and project technique

much more convenient to use.
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