
A Finite Simulation Method in a
Non-Deterministic Call-by-Need

Lambda-Calculus with letrec, constructors, and
case

Manfred Schmidt-Schauss1 and Elena Machkasova2

1 Dept. Informatik und Mathematik, Inst. Informatik, J.W. Goethe-University,
PoBox 11 19 32, D-60054 Frankfurt, Germany,
{schauss}@ki.informatik.uni-frankfurt.de

2 Division of Science and Mathematics,
University of Minnesota, Morris, MN 56267-2134, U.S.A

{elenam}@morris.umn.edu

Abstract. The paper proposes a variation of simulation for checking
and proving contextual equivalence in a non-deterministic call-by-need
lambda-calculus with constructors, case, seq, and a letrec with cyclic
dependencies. It also proposes a novel method to prove its correctness.
The calculus’ semantics is based on a small-step rewrite semantics and
on may-convergence. The cyclic nature of letrec bindings, as well as non-
determinism, makes known approaches to prove that simulation implies
contextual preorder, such as Howe’s proof technique, inapplicable in this
setting. The basic technique for the simulation as well as the correctness
proof is called pre-evaluation, which computes a set of answers for every
closed expression. If simulation succeeds in finite computation depth,
then it is guaranteed to show contextual preorder of expressions.

1 Introduction and Related Work

The construction of compilers and the compilation of programs in higher level,
expressive programming languages is an important process in computer science
that is a highly sophisticated engineering task. Unfortunately there remains a gap
between theory and practice. Usually compilers incorporating lots of complicated
transformations and optimizations are built with only a partial knowledge about
correctness issues. This gap increases with the number of features, such as higher-
order functions, concurrency, store, and system- or user-interaction. The ability
to reason about program equivalence in the presence of non-determinism opens
a door to a rigorous handling of these features.
We study these issues using a call-by-need lambda-calculus L with data struc-
tures and non-determinism that in addition has letrec allowing cyclic binding de-
pendencies. This may have applications for concurrent Haskell [Pey03,PGF96],
and also for other functional programming languages [Han96].

Our language L comes with a rewrite semantics (a small-step semantics) that is
more appropriate to investigate non-determinism than a big-step semantics, since
it explicitly models interleaving and atomicity. On top of the operational seman-
tics we define a contextual semantics with may-convergence, which is maximal,
since all expressions that cannot be distinguished by observations are identified.
This follows an approach pioneered in [Plo75] of considering two small-step
rewrite relations in a calculus: a normal order reduction which represents evalu-
ation of a term by some evaluation engine, such as an interpreter, and transfor-
mation steps performed by a compiler to optimize a program. The latter steps
may include reductions from the calculus as well as other transformations. The
goal is to prove contextual equivalence of the original and the transformed ex-
pressions, i.e. that any transformation step performed anywhere in a term does
not change the term’s convergence behavior.
Unfortunately the approach in [Plo75] cannot be applied to systems with cyclic
dependencies (such as letrec) or with non-determinism, since it requires conflu-
ence of transformations which fails in such systems (see [AW96]). Some alterna-
tive approaches include restrictions on cyclic substitution [AK97] or considering
terms up to infinite unwindings of cycles [AB02].
Investigations of correctness (also called meaning-preservation) for a call-by-
value system of mutually recursive components with applications to modules
and linking were undertaken in [MT00,Mac02] where a proof method based on
diagrams called lift and project was introduced. The diagram approach was
later extended and generalized in [WDK03] in an abstract setting. Another
approach based on multihole contexts was used for a call-by-name system of
mutually recursive components in [Mac07]. However, the diagram-based and
context-based approaches above require that all normal-order reductions pre-
serve behavior of a term, which is not the case for (choice)-reductions. Contex-
tual equivalence for non-deterministic call-by-need calculi was investigated in
[KSS98,SSS07a,SSSS08] using the method of forking and commuting diagrams,
and in [MSC99] using abstract machine-reductions.
An important tool to prove contextual equivalence of concrete expressions is
simulation-based (it is also called applicative simulation) since it allows to show
contextual equivalence of expressions s, t based only on the analysis of the re-
ductions of s, t, in contrast to the definition, which requires checking reduction
in infinitely many contexts. This method was used for variants of lambda calculi,
see e.g [Abr90,How89,Gor99]. An extension of simulation to a non-deterministic
call-by-need calculus was investigated in [Man04] (and generalized in [SSM07]),
where Howe’s [How89,How96] proof technique is extended to call-by-need non-
determinism by using an intermediate approximation calculus. Unfortunately,
these proof methods based on the approach of Howe appear not to be adaptable
to call-by-need non-deterministic calculi with letrec, since cyclic dependencies
cannot be treated: the proof technique of Howe fails in a subtle way.
In this paper we propose a method of finite simulation, i.e., a simulation with
a finite depth, and prove its correctness by a new proof technique that uses
approximations. The simulation method constructs a set of answer-terms for

2

a given expression. These sets are then compared for various closed expres-
sions in order to show contextual equivalence. An answer is either an abstrac-
tion or an constructor-expression, built from constructors, Ω, and abstrac-
tions, such as partial lists. Consider the two (non-convertible) expressions s, t
where s = repeat True is a nonending list and t is recursively defined by
t = choice ⊥ (Cons True t). The latter will evaluate, depending on the choices,
to ⊥, (Cons True ⊥), (Cons True (Cons True ⊥)), The expressions s, t
are equivalent w.r.t. observational equivalence based on may-convergence. Our
simulation method permits to show their equivalence solely on the basis of the
(approximative) answers that can be derived from each expression.
The proof of validity of the proposed method for our calculus L (see section 2)
requires several steps. The first step is to investigate the correctness of several
reductions and transformations in L. Note that the normal-order reduction in the
language L treats chains of variable-variable bindings as transparent for several
reductions. This is crucial for constructing correctness proofs which otherwise
may not even be possible, since the measures for inductions are insufficient. A
context lemma and standardization of reductions are proved. The second step is a
transfer from L to the calculus LS (see section 4), which has the same contextual
equivalence as L, but simpler reduction rules, e.g. variable-variable bindings are
now opaque. The third step (see Sections 5 – 7) is to define the computation of
answers from a closed expression, and to prove criteria for contextual equivalence
on the basis of the answer sets. We also provide a method to analyze contextual
equivalence and preorder of answers. In particular, we show that abstractions
can be compared based on applying them to all closed answers or to Ω. As an
application of this technique, we show that choice (see Section 8) has useful
algebraic properties, such as idempotency, commutativity and associativity, for
all expressions, including open ones.
Missing proofs can be found in [SSM08].

2 The Calculus L

2.1 Syntax and Reductions of the Functional Core Language L

We define the calculus L consisting of a language L(L), its reduction rules, the
normal order reduction strategy, and contextual equivalence. L is the calculus
considered in [SSSS04] and an extension by choice of the one in [SSSS08].
The rules of the calculus limit copying of abstractions and prohibit copying of
constructor expressions, thus limiting the level of complexity of proofs. There
are finitely many types, and for every type T there are finitely many, say #(T),
constants called constructors cT,i, i = 1, . . . ,#(T), each with an arity ar(cT,i) ≥
0. The syntax for expressions E is as follows:

E ::= V | (c E1 . . . Ear(c)) | (seq E1 E2) | (caseT E Alt1 . . . Alt#(T)) | (E1 E2)
(choice E1 E2) | (λ V.E) | (letrec V1 = E1, . . . , Vn = En in E)

Alt ::= (Pat → E) Pat ::= (c V1 . . . Var(c))

3

where E,Ei are expressions, V, Vi are variables, and c denotes a constructor.
Expressions (caseT . . .) have exactly one alternative for every constructor of type
T . We assign the names application, abstraction, constructor application, seq-
expression, case-expression, or letrec-expression to the expressions (E1 E2),
(λV.E), (c E1 . . . Ear(c)), (seq E1 E2), (caseT E Alt1 . . . Alt#(T)), (letrec V1 =
E1, . . . , Vn = En in E), respectively. A value v is defined as either an abstraction
or a constructor application (with any subexpressions).
We assume that variables Vi in letrec-bindings are all distinct, that the bindings
can be interchanged, and that there is at least one binding. letrec is recursive,
i.e., the scope of xj in (letrec x1 = E1, . . . , xj = Ej , . . . in E) is E and all ex-
pressions Ei. Free and bound variables in expressions and α-renaming are defined
using the usual conventions. The set of free variables in t is denoted as FV (t).
For simplicity we use the distinct variable convention, i.e., all bound variables in
expressions are assumed to be distinct, and free variables are distinct from bound
variables. The reduction rules are assumed to implicitly rename bound variables
in the result by α-renaming if necessary. We will use some obvious abbreviations
of the syntax. E.g. {xi = xi+1}ni=m abbreviates xm = xm+1, . . . , xn = xn+1.

Definition 2.1. The class C of all contexts is defined as the set of expressions
C from L, where the symbol [·], the hole, is a predefined context, treated as an
atomic expression, such that [·] occurs exactly once in C.
Given a term t and a context C, we will write C[t] for the expression constructed
from C by plugging t into the hole, i.e, by replacing [·] in C by t, where this
replacement is meant syntactically, i.e., a variable capture is permitted.

Definition 2.2 (Reduction Rules of the Calculus L). The (base) reduction
rules for the calculus and language L are defined in figures 1 and 2, where the
labels S, V are to be ignored in this subsection, but will be used in subsection
2.2. The abbreviation Env means a set of bindings. The reduction rules can be
applied in any context. Several reduction rules are denoted by their name prefix,
e.g. the union of (llet-in) and (llet-e) is called (llet). The union of (llet), (lcase),
(lapp), (lseq) is called (lll).
Reductions (and transformations) are denoted using an arrow with super and/or
subscripts: e.g. llet−−→. Transitive closure of reductions is denoted by a +, reflexive
transitive closure by a ∗. E.g. ∗−→ is the reflexive, transitive closure of →.

2.2 Normal Order Reduction and Contextual Equivalence

The normal order reduction strategy of the calculus L is a call-by-need strategy,
which is a call-by-name strategy adapted to sharing. The labeling algorithm in
figure 3 will detect the position to which a reduction rule is applied according
to the normal order. It uses the labels: S (subterm), T (top term), V (visited),
W (visited, no copy-target). For a term s the labeling algorithm starts with sT ,
where no other subexpression in s is labeled, and exhaustively applies the rules
in figure 3. The algorithm may terminate with a failure if a relabeling occurs, and

4

(lbeta) ((λx.s)S r)→ (letrec x = r in s)
(cp-in) (letrec x1 = vS , {xi = xi−1}mi=2,Env in C[xV

m])
→ (letrec x1 = v, {xi = xi−1}mi=2,Env in C[v])

where v is an abstraction
(cp-e) (letrec x1 = vS , {xi = xi−1}mi=2,Env , y = C[xV

m] in r)
→ (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[v] in r)

where v is an abstraction
(llet-in) (letrec Env1 in (letrec Env2 in r)S)

→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx)S in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) ((letrec Env in t)S s)→ (letrec Env in (t s))
(lcase) (caseT (letrec Env in t)S alts)→ (letrec Env in (caseT t alts))
(seq-c) (seq vS t)→ t if v is a value
(seq-in) (letrec x1 = vS , {xi = xi−1}mi=2,Env in C[(seq xV

m t)])
→ (letrec x1 = v, {xi = xi−1}mi=2,Env in C[t]) if v is a value

(seq-e) (letrec x1 = vS , {xi = xi−1}mi=2,Env , y = C[(seq xV
m t)] in r)

→ (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[t] in r) if v is a value
(lseq) (seq (letrec Env in s)S t)→ (letrec Env in (seq s t))
(choice-l) (choice s t)S∨T → s
(choice-r) (choice s t)S∨T → t

Fig. 1. Reduction rules, part a

otherwise with success, which indicates a potential normal-order redex, usually
as the direct superterm of the S-marked subexpression.

Definition 2.3 (Normal Order Reduction of L). Let t be an expression.
Then a single normal order reduction step no−→ is defined by first applying the
labeling algorithm to t. If the labeling algorithm terminates successfully, then one
of the rules in figures 1 and 2 has to be applied, if possible, where the labels S, V
must match the labels in the expression t. The normal order redex is defined as
the subexpression to which the reduction rule is applied.

Definition 2.4. A reduction context R is any context, such that its hole will be
labeled with S or T by the labeling algorithm. A surface context, denoted as S,
is a context where the hole is not contained in an abstraction. An application
surface context, denoted as AS, is a surface context where the hole is neither
contained in an abstraction nor in an alternative of a case-expression.

Note that the normal order redex is unique, and that a normal-order reduction
is unique with the only exception of (choice).
A weak head normal form (WHNF) is either a value v or an expression
(letrec Env in v), or (letrec x1 = (c

−→
t), {xi = xi−1}mi=2,Env in xm).

Definition 2.5. A normal order reduction sequence is called an evaluation if the
last term is a WHNF. For a term t, we write t↓ iff there is an evaluation starting

5

(case-c) (caseT (ci
−→
t)S . . . ((ci

−→y)→ t) . . .)→ (letrec {yi = ti}ni=1 in t)
where n = ar(ci) ≥ 1

(case-c) (caseT cSi . . . (ci → t) . . .)→ t if ar(ci) = 0

(case-in) letrec x1 = (ci
−→
t)S , {xi = xi−1}mi=2, Env

in C[caseT xV
m . . . ((ci

−→z) . . .→ t) . . .]
→ letrec x1 = (ci

−→y), {yi = ti}ni=1, {xi = xi−1}mi=2, Env
in C[(letrec {zi = yi}ni=1 in t)]

where n = ar(ci) ≥ 1 and yi are fresh variables
(case-in) letrec x1 = cSi , {xi = xi−1}mi=2, Env in C[caseT xV

m . . . (ci → t) . . .]
→ letrec x1 = ci, {xi = xi−1}mi=2, Env in C[t] if ar(ci) = 0

(case-e) letrec x1 = (ci
−→
t)S , {xi = xi−1}mi=2,

u = C[caseT xV
m . . . ((ci

−→z)→ r1) . . .], Env in r2
→ letrec x1 = (ci

−→y), {yi = ti}ni=1, {xi = xi−1}mi=2,
u = C[(letrec z1 = y1, . . . , zn = yn in r1)], Env in r2

where n = ar(ci) ≥ 1 and yi are fresh variables
(case-e) letrec x1 = cSi , {xi = xi−1}mi=2, u = C[caseT xV

m . . . (ci → r1) . . .], Env in r2
→ letrec x1 = ci, {xi = xi−1}mi=2 . . . , u = C[r1], Env in r2
if ar(ci) = 0

Fig. 2. Reduction rules, part b

from t. We also say that t is converging (or terminating). Otherwise, if there
is no evaluation of t, we write t⇑. A specific representative of non-converging
expressions is Ω := (λz.(z z)) (λx.(x x)), i.e. Ω⇑. For consistency with our
earlier work (e.g. [SSS07b]) the must-divergence notation ⇑ is used.

As an example for normal-order reduction, some reductions of Ω:
(λz.(z z)) (λx.(x x))

no,lbeta−−−−−→ (letrec z = λx.(x x) in (z z))
no,cp−−−→ (letrec z =

λx.(x x) in ((λx′.(x′ x′)) z))
no,lbeta−−−−−→ (letrec z = λx.(x x) in (letrec x1 =

z in (x1 x1)))
no,llet−−−−→ (letrec z = λx.(x x), x1 = z in (x1 x1)) −−→

Definition 2.6 (contextual preorder and equivalence). Let s, t be terms.
Then:

s ≤c t iff ∀C[·] : C[s]↓ ⇒ C[t]↓
s ∼c t iff s ≤c t ∧ t ≤c s

By standard arguments, we see that ≤c is a precongruence and that ∼c is a
congruence, where a precongruence ≤ is a preorder on expressions, such that
s ≤ t ⇒ C[s] ≤ C[t] for all contexts C, and a congruence is a precongruence
that is also an equivalence relation.

3 Correctness of Reductions and Transformations

Theorem 3.1. All the reductions (viewed as transformations) in the base calcu-
lus L with the exception of (choice) maintain contextual equivalence, i.e., when-

6

(letrec Env in t)T → (letrec Env in tS)V

(s t)S∨T → (sS t)V

(seq s t)S∨T → (seq sS t)V

(caseT s alts)S∨T → (caseT sS alts)V

(letrec x = s,Env in C[xS]) → (letrec x = sS ,Env in C[xV])
(letrec x = s, y = C[xS],Env in t) → (letrec x = sS , y = C[xV],Env in t)

if C[x] 6= x
(letrec x = s, y = xS ,Env in t) → (letrec x = sS , y = xW ,Env in t)
The labeling rules can be applied in any context

Fig. 3. Labeling algorithm for L

ever t a−→ t′, with a ∈ {cp, lll, case, seq, lbeta}, then t ∼c t′. The same holds for
all transformations in figure 4. Moreover, s choice−−−−→ t implies t ≤c s.

We define non-reduction transformations in Figure 4. Some transformations have
two or more forms, e.g. (ve1) and (ve2). The side condition for (abs2) guarantees
finiteness of (abs2) sequences. The transformations are used later either for the
pre-evaluation or to aid correctness proofs.

Proposition 3.2. The expression Ω is the least element w.r.t. ≤c, and for every
closed expression s with s⇑, the equation s ∼c Ω holds.

We summarize correctness of transformations and decreasing property of (choice)
in the standardization result, which shows that reduction sequences can be stan-
dardized using normal-order reduction.

Theorem 3.3 (Standardization). If t ∗−→ t′ where t′ is a WHNF and the
sequence ∗−→ consists of any reduction from L in figures 1 and 2 and of transfor-
mation steps from figure 4, then t↓.

4 A Simpler Calculus

We define a simpler calculus LS that is used to produce a set of values of any
closed expression. It is formulated such that a so-called pre-evaluation can be
defined and shown to be a correct tool to prove contextual preorder and contex-
tual equivalence of expressions in almost the same way as the simulation method
would do it. The calculus LS does not use variable-binding chains for reduction
steps, and permits also copying expressions of the form (c x1 . . . xn), where xi
are variables. Such expressions are called cv-expression.
The rules of the calculus LS are defined in figure 6. We use labels S, T, V indi-
cating the normal order redex The labeling algorithm in 5 starts with tT , where
no subexpression of t is labeled, and uses the rules exhaustively, which can be
applied in any context.

7

(ve1) (letrec x = y, x1 = t1, . . . , xn = tn in r)→ (letrec x1 = t′1, . . . , xn = t′n in r′)
where t′i = ti[y/x], r′ = r[y/x], n ≥ 0 and if x 6= y

(ve2) (letrec x = y in s)→ s[y/x] if x 6= y

(abs1) (letrec x = c
−→
t ,Env in s)→ (letrec x = c −→x , {xi = ti}ar(c)i=1 ,Env in s)

where ar(c) ≥ 1 and for 1 ≤ i ≤ ar(c) xi ∈ FV (Env)
(abs2) (c t1 . . . tn)→ (letrec x1 = t1, . . . , xn = tn in (c x1 . . . xn))

where at least one of ti is not a variable

(cpcx-in) (letrec x = c
−→
t ,Env in C[x])

→ (letrec x = c −→y , {yi = ti}ar(c)i=1 ,Env in C[c −→y])

(cpcx-e) (letrec x = c
−→
t , z = C[x],Env in t)

→ (letrec x = c −→y , {yi = ti}ar(c)i=1 , z = C[c −→y],Env in t)
(gc1) (letrec {xi = si}ni=1,Env in t)→ (letrec Env in t)

if for all i : xi does not occur in Env nor in t
(gc2) (letrec {xi = si}ni=1 in t)→ t if for all i : xi does not occur in t
(ucp1) (letrec Env , x = t in S[x])→ (letrec Env in S[t])
(ucp2) (letrec Env , x = t, y = S[x] in r)→ (letrec Env , y = S[t] in r)
(ucp3) (letrec x = t in S[x])→ S[t]

where in the (ucp)-rules, x has at most one occurrence in S[x] and no
occurrence in Env , t, r; and S is a surface context

(cpbot1) (letrec x = Ω,Env in C[x])→ (letrec x = Ω,Env in C[Ω])
(cpbot2) (letrec x = Ω, y = C[x],Env in r)→ (letrec x = Ω, y = C[Ω],Env in r)

Fig. 4. Transformations in L calculus

(letrec x = s,Env in C[xS]) → (letrec x = sS ,Env in C[xV])
(letrec x = s, y = C[xS],Env in r) → (letrec x = sS , y = C[xV],Env in r)

if C 6= [.]
The rules for (letrec Env in t)T , (s t), (seq s t) and (case s alts) are as for L

Fig. 5. Labeling rules of LS

An LS-WHNF is defined as v or (letrec Env in v), where v is an abstraction
or a cv-expression. It is easy to see that every LS-WHNF is also an L-WHNF,
and that for every L-WHNF t, there is an LS-WHNF t′ with: t

LS ,no,∗−−−−−→ t′ using
only (abs), (lll), and (cp).
Using diagrams and an induction on the length of a reduction sequence, the
equivalence is shown in [SSM08]:

Theorem 4.1. Let s be an expression. Then s↓LS
⇔ s↓L.

5 Pre-Evaluation of Expressions

In the following we will use the technical observation that during a normal-
order reduction of t we can trace the bindings xi = ri of a closed subexpression

8

(cp-in) (letrec x = vS ,Env in C[xV])→ (letrec x = v,Env in C[v])
where v is an abstraction or a cv-expression

(cp-e) (letrec x = vS ,Env , y = C[xV] in r)→ (letrec x = v,Env , y = C[v] in r)
where v is an abstraction or a cv-expression

(abs) (c t1 . . . tn)S∨T → (letrec x1 = t1, . . . , xn = tn in (c x1 . . . xn))
if (c t1 . . . tn) is not a cv-expression

(lbeta), (seq-c), (case), (choice), (lll) are as in L

Fig. 6. Reduction rules of LS

r = (letrec x1 = r1, . . . , xn = rn in s′) of t, if r occurs on the surface of t.
The application of this observation in proofs allows us to draw several nice and
important conclusions.
We will use evaluation in LS to reduce closed expressions in all possible ways,
where reduction takes place in surface contexts. The intention is to have a means
to compare closed expressions by their sets of results, even perhaps infinite sets.
We use the additional constant } (called stop) in order to indicate stopped
reductions. Its semantical value is ⊥, but it is clearer if there is a notational
distinction between them.

Definition 5.1. A pseudo-value is an expression built from }, constructors,
and abstractions, and an answer is a pseudo-value not equal to }.

We show the intention of the pre-evaluation by an example. The idea is to
first obtain by reduction all possible WHNFs, and then to apply normal-order
reductions locally to the bindings. Since this in general does not terminate, we
stop the reduction at any point and then fill the results into the in-expression: the
bindings that are cv-expressions or abstractions are copied sufficiently often into
the in-expression. Due to recursive bindings, this may also be a non-terminating
process that has to be stopped. We strip away the top letrec-environment and
replace the occurrences of the previously let-bound variables by }.

Example 5.2. The expression (letrec x = (Cons True x) in x) has the following
resulting answers: (Cons } }), (Cons True }), (Cons } (Cons True })),
(Cons True (Cons True })),

The approximation reduction A−→ is based upon LS-reduction:

Definition 5.3. Let s be a closed expression. We define the approximation re-
duction A−→as follows:
Then s A−→ v holds for some closed answer v iff there is a reduction starting from
(letrec x = s in x) to v using the following intermediate steps.

1. (letrec x = s in x) ∗−→ s′ using an LS-evaluation to a WHNF s′. Continu-
ing from s′, we perform any number of LS-reductions in application surface
contexts (non-deterministically), where the target variables of (cp) are also
in application surface contexts.

9

2. Perform any number of copy-reductions into the “in”-expression. Here the
target variable of (cp) may be in any context C.

3. The last step is to remove the top-letrec-environment, and to replace all
remaining let-bound variables in the “in”-expression by }. The resulting ex-
pression is now either } or one of the desired answers v.

The set of answers reachable from s by this procedure is defined as ans(s).

Lemma 5.4. Let s be a closed expression and v ∈ ans(s). Then v ≤c s.

Proof. This follows from the correctness of the transformations proved in the
previous sections, from decreasingness of (choice) (see Theorem 3.1) and from
the fact that } ∼c Ω is the least element w.r.t. ≤c (see Proposition 3.2). 2

Now we prove that sufficiently many answers are reached by these reductions.

Theorem 5.5. Let R be a reduction context, s be a closed expression such that
R[s]↓. Then there is an answer v with (letrec x = s in x) A−→ v, such that
R[v]↓. Note that s ∼c (letrec x = s in x) (see Theorem 3.1).

Proof. In the proof we always refer to the calculus LS .
Let R be a reduction context and s be a closed expression. Let Red be a normal-
order reduction of R[(letrec x = s in x)] no−→ r1 . . .

no−→ rn, where rn is a
WHNF, and n is the number of normal-order reductions. In every expression of
Red , the bindings inherited from x = s can be identified in every ri by labeling
them with †. Thus we label letrec-bound variables and the bound expression in
surface positions that are derived from s. An important invariant is that for all
†-labeled bindings yi = ai, and all free variables y in ai, y is also a †-labeled
variable, which follows by induction on the length of the reduction from the
fact that s is closed. If a WHNF w of R[(letrec x = s in x)] is reached, then
from the WHNF we can gather all the †-labeled bindings in the top level letrec
environment of w, and construct the expression s′ := (letrec Env in x), where
we denote x1 = s1, . . . , xm = sm by Env and where x1 = x for convenience. Now
we compute one possible answer v from s′ as required by our claim as follows.
We perform n+1 of the following macro-copy-steps within the environment Env
into the “in”-expression:
One step consists of replacing all occurrences of xi by si in the “in”-expression
(initially x) for all xi = si in Env s.t. si is an abstraction or a cv-expression. We
do this in parallel for every letrec-bound variable, which is the same as applying
the substitution σ that is formed from Env . This is repeated n+1 times. The last
step is to remove the top-environment, and to replace all letrec-bound variables
in the in-expression by }. This may produce either }, or the desired answer v,
and we have s′ A−→ v according to Definition 5.3. Since we assumed that a WHNF
is reached, and s was in a reduction context before, it is not possible that only }
is reached, since the initial variable x was in a reduction context and there must
be at least one normal-order copy into x. Thus at least one of the macro-copy
steps will replace x by a constructor-expression or an abstraction.

10

Now we have to show that R[v]↓. We start by rearranging the normal-order
reduction Red of R[(letrec x = s in x)], such that all the reductions that are
within the †-labeled Env are performed first, i.e., R[(letrec x = s in x)] ∗−→
R[s′]

no,∗−−−→ rn. It is easy to see that the R[(letrec x = s in x)] ∗−→ R[s′] starts
with an LS-normal-order reduction to a WHNF, since x is “demanded” first.
The subsequent reductions remain in application surface positions. The reduction
R[s′]

no,∗−−−→ rn is normal-order, and has length at most n. The reduction sequence
Red is a mixture of reduction steps within †-labeled components, or reduction
steps that modify the non-†-labeled components. All reductions are in surface
contexts. Hence the †-reductions can be shifted to the left over non-†-reductions,
since they are independent.
Now we focus on R[s′]

no,∗−−−→ rn of length at most n. We have to show that for
s′
∗−→ v, we also have R[v]

no,∗−−−→ u, where u is a WHNF. The term v and its
descendents can be represented using φ≥k, which is defined as follows: φ≥k(r)
denotes r modified by the following operations: first k applications of σ are
performed (the substitution corresponding to the s-environment Env), then
any number of (cp)-steps using Env and variables in r as target variables, and
as a final step [}/xi]-replacements in r for all let-bound variables in Env . Now

we have to show that (φ≥n+1R[s′])↓. The steps
no,a←−−− .

φ≥k−−→ can be switched,

i.e. replaced by
φ≥k−1−−−−→ .

ρ,∗←−−, where ρ = {(no, a), (abs), (lll), (cp), (cpbot), (ve)}.
Using this commutation, it is easily shown by induction that, finally, we obtain a
WHNF that is the result of a macro-copy reduction using φ≥i, where i ≥ 1. The
argument now is that the replaced positions do not contribute to the WHNF w,
hence it remains a WHNF after applying φ≥1. This means there is a reduction
sequence R[v] ∗−→ w′, where w′ is a WHNF. Finally, the standardization theorem
3.3 shows that R[v]↓. 2

6 Least Upper Bounds and Sets of Answers

Definition 6.1. Let W be a set of expressions, and let t be an expression. Then
t is a lub of W iff ∀u ∈ W : u ≤c t, and for every s with ∀u ∈ W : u ≤c s, it is
t ≤c s.
The expression t is called a contextual lub (club) of W , iff for all contexts C:
C[t] is a lub of {C[r] | r ∈ W}. The notation is t ∈ club(W). An expression
t is called a linear club (lclub) of W if the set W is a ≤c-ascending chain of
expressions. The notation is t ∈ lclub(W). The set of all t such that t ∈ lclub(A)
for some A ⊆W is denoted as sublclub(W).

Example 6.2. The following ≤c-ascending chain λx1.Ω, λx1, x2.Ω,
. . .λx1, . . . , xn.Ω has Y K as lclub, which is equivalent to the value λx.(Y K).
The combinators are defined as Y = λf.(λx.f(x x)) (λx.f(x x)), and
K = λx, y.x.

Easy arguments show that the following holds:

11

Lemma 6.3. For any closed expression s: s ∼c Ω iff ans(s) = ∅. Otherwise, if
s 6∼c Ω, then s ∈ club(ans(s)).

This yields an immediate criterion for contextual preorder:

Corollary 6.4. Let s, t be closed expressions. If for all w ∈ ans(s) we also have
w ≤c t, then s ≤c t.

The following useful sufficient condition immediately follows from the corollary:

Theorem 6.5. Let s, t be closed expressions. If for all v ∈ ans(s) there is some
w ∈ sublclub(ans(t)) with v ≤c w, then s ≤c t.

Note that a simplistic subset-condition for answer-sets is insufficient for s ≤c t:

Example 6.6. Let s := λx.Y K, f z := choice z (letrec u = f z in λx.u) and
t := f Ω, where an explicit definition of f is f = Y (λg.λz.choice Ω (letrec u =
g z in λx.u)). Then for every v ∈ ans(t), we have v <c s. However, it is easy
to see that s ∼c t, since λx.Y K is the club of the ascending chain of values in
ans(t).

The following is obvious using contexts:

Proposition 6.7. (c s1 . . . sn) ≤c (c t1 . . . tn) ⇔ si ≤c ti for all i.

7 Criteria for Abstractions

Besides the trivial method to compare two abstractions λx.s and λx.t by α-
equivalence, perhaps combined with other correct transformations, we give a
stronger condition for λx.s ≤c λx.t that is based on applying the abstractions to
all possible pseudo-value arguments not using the criteria for all contexts. The
following is proved in [SSM08].

Lemma 7.1. [Context Lemma for Closing Reduction Contexts] Let s, t be ex-
pressions. Then s ≤c t iff for all reduction contexts R: if R[s], R[t] are closed
and R[s]↓, then also R[t]↓,

In a pseudo-value environment Env every bound term is a (closed) pseudo-value.

Proposition 7.2. Let s, t be two expressions. Then s ≤c t iff for all pseudo-
value environments Env: if (letrec Env in s), (letrec Env in t) are closed
then (letrec Env in s) ≤c (letrec Env in t).

Proof. In order to show the non-trivial direction, we will use Lemma 7.1. Let R
be a reduction context such that R[s], R[t] are closed and such that R[s]↓. It is no
restriction to assume that R[·] is of the form (letrec Env1,Env2 in R′[·]), where
Env1 binds all the variables in FV (s, t), and (letrec Env1 in [·]) is closed. Since
s′ := (letrec Env1,Env2 in R′[s])↓, there is a normal-order reduction Red of

12

s′. In the same way as in the proof of Theorem 5.5, we can evaluate all bindings
in Env1 first, obtaining Env ′1 such that s′′ := (letrec Env ′1,Env2 in R′[s])↓.
The environment Env ′1 will be further modified into Env ′′1 as follows: every
binding x = r, where r is not an abstraction and not a cv-expression is
changed into x = }. Again we have s(3) := (letrec Env ′′1 ,Env2 in R′[s])↓,
since the }-bindings do not influence the normal-order reduction. Let n
be the length of a normal-order reduction of s(3). We further modify Env ′′1
into Env (3)

1 by applying the substitution σ corresponding to Env ′′1 at least
n times to the environment, and then replacing all remaining occurrences
of variables by }. Similar as in the proof of Theorem 5.5, we argue that
(letrec Env (3)

1 ,Env2 in R′[s])↓. Using the knowledge about correct transfor-
mations, it can be proved using induction that (letrec Env (3)

1 ,Env2 in R′[s]) ∼c
(letrec Env (3)

1 ,Env2 in R′[(letrec Env (3)
1 in s)]), hence

(letrec Env (3)
1 ,Env2 in R′[(letrec Env (3)

1 in s)])↓.
Now we argue the reverse way for t: By the assumption, we
have (letrec Env (3)

1 ,Env2 in R′[(letrec Env (3)
1 in s)]) ≤c

(letrec Env (3)
1 ,Env2 in R′[(letrec Env (3)

1 in t)]), hence
(letrec Env (3)

1 ,Env2 in R′[(letrec Env (3)
1 in t)])↓. The same argument

as above shows that also (letrec Env (3)
1 ,Env2 in R′[t])↓. Since } ∼c ⊥ is the

≤c-least element, and (cp) does not change the ∼c equivalence class, we also
have (letrec Env ′′1 ,Env2 in R′[t])↓. Since (letrec Env ′′1 ,Env2 in R′[t]) can be
reached from (letrec Env1,Env2 in R′[t]) by reductions that only decrease by
≤c due to Theorem 3.1, we finally have (letrec Env1,Env2 in R′[t])↓. Since R
was arbitrary, we can apply Lemma 7.1 and obtain that s ≤c t 2

Theorem 7.3. λx.s ≤c λx.t iff for all pseudo-values v: (λx.s) v ≤c (λx.t) v.

Proof. Follows from Proposition 7.2, since (λx.s) v ∼c (letrec x = v in s) 2

8 Finite Simulation Method and Examples

Now we have several criteria to prove s ≤c t for closed expressions s, t.

1. If ans(s) ⊆ ans(t), then s ≤c t.
2. If for every v ∈ ans(s), there is some w ∈ ans(t) with v ≤c w, then s ≤c t.
3. If for every v ∈ ans(s), there is some w ∈ ans(t) with v ≤c w or some
w ∈ sublclub(ans(t)) with v ≤c w, then s ≤c t.

4. if s = c s1 . . . sn, t = c t1 . . . tn, and si ≤c ti for all i, then s ≤c t.
5. if s = λx.s′, t = λx.t′, and for all pseudo-values v: s v ≤c t v, then s ≤c t.

The following (non-effective) procedure is a prototype of “finite simulation” for
testing two closed expressions s, t whether they are in a relation s ≤c t:

1. Compute the answer-sets ans(s) and ans(t).

13

2. For every value v ∈ ans(s), find a value w ∈ ans(t) such that v ≤c w.
3. For the v ≤c w-test, use the following tests, recursively:

(a) If v = (c s1 . . . sm), w = (c t1 . . . tm), make sure that vi ≤c wi for all i.
(b) If v = λx.s′, w = λx.t′, make sure that for all pseudo-values a:

(v a) ≤c (w a), again using this procedure.

If answers-sets are finite, the recursion depth is bounded, and all the involved
tests are decidable, the procedure becomes effective. Proving s ∼ t for expres-
sions s, t can be done by checking s ≤c t and t ≤c s.

Example 8.1. Let s := repeat True, t := Y (λa.choice Ω (Cons True a) where
repeat := Y (λr.λx.Cons x (r x)). Then s can be reduced to the answers
(Cons True (Cons True (. . . (Cons True Ω)))) and t can be reduced to the same
answers, where we use } ∼c Ω. This implies that s ∼c t.

Example 8.2. Finite simulation can distinguish expressions that differ only
by sharing: Let s := (letrec x = choice True False in λy.x) and
let t = λy.(letrec x = choice True False in x). These expres-
sions are contextually different, using the context C[·] := (letrec z =
[·] in if (z ⊥) then (if (z ⊥) then True else ⊥) else True). The answer-
sets are: ans(t) = {t}, ans(s) = {λy.True, λy.False}.

Example 8.3. We are able to prove idempotency, commutativity and associativ-
ity for choice as a binary operator or all expressions, and hence these identities
can be used as program transformation using Proposition 7.2: For instance,
for commutativity: every pseudo-value environment Env that closes s and t, we
consider (letrec Env in choice s t) and (letrec Env in choice t s). The first
step of the approximation is the choice-reduction. Then the right and left hand
side have the same set of answers, hence they are equivalent, which follows from
Corollary 6.4. The same can be done for the other identities.

9 Conclusion and Further Research

We have shown that in a call-by-need non-deterministic lambda calculus with
letrec, where the proof method of Howe fails to prove correctness of co-inductive
simulation, the correctness of finite simulation can be established as a tool with
almost the same practical power. Further research is to adapt and extend the
methods to an appropriately defined simulation, and to investigate an extension
of the tools and methods to a combination of may- and must-convergence.

Acknowledgements
We thank David Sabel for reading several versions of the paper.

References

AB02. Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with
letrec. Annals of Pure and Applied Logic, 117:95–168, 2002.

14

Abr90. S. Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research
Topics in Functional Programming, pages 65–116. Addison-Wesley, 1990.

AK97. Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Inform.
and Comput., 139(2):154–233, 1997.

AW96. Z. M. Ariola and J. W.Klop. Equational term graph rewriting. Fundamentae
Informaticae, 26(3,4):207–240, 1996.

Gor99. A.D. Gordon. Bisimilarity as a theory of functional programming. Theoret.
Comput. Sci., 228(1-2):5–47, October 1999.

Han96. M. Hanus. A unified computation model for functional and logic programming.
In POPL 97, pages 80–93. ACM, 1996.

How89. D. Howe. Equality in lazy computation systems. In 4th IEEE Symp. on Logic
in Computer Science, pages 198–203, 1989.

How96. D. Howe. Proving congruence of bisimulation in functional programming lan-
guages. Inform. and Comput., 124(2):103–112, 1996.

KSS98. A. Kutzner and M. Schmidt-Schauß. A nondeterministic call-by-need lambda
calculus. In ICFP 1998, pages 324–335. ACM Press, 1998.

Mac02. E. Machkasova. Computational Soundness of Non-Confluent Calculi with Ap-
plications to Modules and Linking. PhD thesis, Boston University, 2002.

Mac07. E. Machkasova. Computational soundness of a call by name calculus of
recursively-scoped records. In 7th WRS, ENTCS, 2007.

Man04. M. Mann. Congruence of bisimulation in a non-deterministic call-by-need
lambda calculus. In SOS’04, BRICS NS-04-1, pages 20–38, 2004.

MSC99. A. K. D. Moran, D. Sands, and M. Carlsson. Erratic fudgets: A semantic
theory for an embedded coordination language. In Coordination ’99, volume
1594 of LNCS, pages 85–102. Springer-Verlag, 1999.

MT00. E. Machkasova and F. A. Turbak. A calculus for link-time compilation. In
ESOP’2000, volume 1782 of LNCS, pages 260–274, 2000.

Pey03. Simon Peyton Jones. Haskell 98 language and libraries: the Revised Report.
Cambridge University Press, 2003. www.haskell.org.

PGF96. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. 23th
Principles of Programming Languages, 1996.

Plo75. Gordon D. Plotkin. Call-by-name, call-by-value, and the lambda-calculus. The-
oret. Comput. Sci., 1:125–159, 1975.

SSM07. M. Schmidt-Schauß and M. Mann. On equivalences and standardization in
a non-deterministic call-by-need lambda calculus. Frank report 31, Inst. f.
Informatik, J.W.Goethe-University, Frankfurt, August 2007.

SSM08. M. Schmidt-Schauß and E. Machkasova. A finite simulation method in a non-
deterministic call-by-need calculus with letrec, constructors and case. Frank 32,
Inst. f. Informatik, J.W.Goethe-University, Frankfurt, 2008.

SSS07a. D. Sabel and M. Schmidt-Schauß. A call-by-need lambda-calculus with locally
bottom-avoiding choice: Context lemma and correctness of transformations.
Math. Structures Comput. Sci., 2007. accepted for publication.

SSS07b. M. Schmidt-Schauß and D. Sabel. On generic context lemmas for lambda
calculi with sharing. Frank 27, Inst. Informatik, J.W.G-Univ., Frankfurt, 2007.

SSSS04. M. Schmidt-Schauß, M. Schütz, and D. Sabel. On the safety of Nöcker’s
strictness analysis. Frank 19, Inst. Informatik, J.W.G-Univ., Frankfurt, 2004.

SSSS08. M. Schmidt-Schauß, M. Schütz, and D. Sabel. Safety of Nöcker’s strictness
analysis. J. Funct. Programming, pages 00–00, 2008. accepted for publication.

WDK03. J. B. Wells, D.Plump, and F. Kamareddine. Diagrams for meaning preser-
vation. In RTA, volume 2706 of LNCS, pages 88–106, 2003.

15

http://www.brics.dk/NS/04/Ref/BRICS-NS-04-Ref/

	A Finite Simulation Method in a Non-Deterministic Call-by-Need Lambda-Calculus with letrec, constructors, and case
	Manfred Schmidt-Schauss and Elena Machkasova
	Introduction and Related Work
	The Calculus L
	Syntax and Reductions of the Functional Core Language L
	Normal Order Reduction and Contextual Equivalence

	Correctness of Reductions and Transformations
	A Simpler Calculus
	Pre-Evaluation of Expressions
	Least Upper Bounds and Sets of Answers
	Criteria for Abstractions
	Finite Simulation Method and Examples
	Conclusion and Further Research

