
Effects of Static Type Specialization on Java
Generic Collections (Technical Report)

UMM Working Papers Series
Work in progress

Elena Machkasova, Elijah Mayfield, Nathan Dahlberg, J. Kyle Roth

University of Minnesota, Morris

Last updated on: June 4, 2008.

Abstract. Generic types in the Java programming language provide
the convenience of writing generic code and perform compilation-time
type checking. However, the implementation based on type erasure dis-
cards type instance information before run time, complicating dynamic
optimizations. We propose a specialization of generic types - a source-
to-source transformation that creates specialized copies of a subset of
generic classes, replacing their type bounds with specific instance types.
Making instance type information available at run time removes unnec-
essary typecasting and enables the JVM to perform optimizations, such
as method inlining. However, interactions of type specialization with the
JVM are complex. Specializing more classes may introduce inefficiencies
due to extra typechecks, array operations, or JVM warmup. We study
trade-offs between effects of type specialization and suggest criteria for
selecting groups of classes for performance improvements.
As an example, we compare different ways of specializing subsets of the
Java collections library and present an algorithm for specializing such
classes. Both the client and the server modes of Sun’s HotSpot JVM
are studied. We show that generic type specialization enables a program
speed up of up-to 20% by specializing only a few classes.

1 Introduction

Generic types in the JavaTMprogramming language are a much-needed software
development tool that allow programmers to combine the convenience of generic
programming with the advantages of static typechecking. Java generics are im-
plemented using a type erasure approach: after performing typechecking, a static
compiler replaces the type parameter with its upper bound (either the one spec-
ified in the class declaration, or, if none is specified, by Object). This approach
provides a convenient uniform representation of a generic type, but information
about the actual type parameter for a given instance of a generic class is “erased”
by the time the program is compiled to bytecode. It is very hard, and in many
cases impossible, to dynamically restore information about the actual type pa-
rameters during run time. Since Java optimizations are traditionally performed

at run time by a Java Virtual Machine (JVM), this type information cannot be
used to optimize programs. This means that type erasure generally produces less
efficient code than what would be produced from a type-specialized program.

We propose and study a transformation of Java generic types that we call
specialization of generic types. This optimization creates a copy of a generic
type with the type bound replaced by a more specific type, which is based on
the actual type parameter. This leads to elimination of unnecessary type casts
and provides opportunities for the JVM to better optimize the code, utilizing
more precise type information. This optimization is performed as a source-to-
source transformation. It is intended for computationally heavy programs that
use generic data structures intensively.

The specialization algorithm is presented in section 4, which also discusses
correctness of the algorithm and points out the need for an interactive phase.
Currently the algorithm is performed by hand. Extending the algorithm to more
complex situations and implementation of the algorithm is a part of our future
work; see Section 10 for details.

Using the Java Collections library as a source of generic code examples,
we compared variations of the optimization that specialize different subsets of
classes. We observed that it is possible to specialize only a subset of a program’s
generic class hierarchy and still get substantial benefits (up to 20%). Thus this
approach does not cause as much code duplication as a heterogeneous transla-
tion, such as C++ templates, would.

Our studies show that a certain group of specializations that we call interface
specializations provides maximal efficiency with limited code duplication. In an
example of an interface specialization using the ArrayList hierarchy, only six
types out of eleven are specialized. As a result, we obtain the same efficiency as
for a completely specialized program (see Section 6.2 for an overview of tests
and the summary of results).

Different choices of subsets of classes to be specialized result in very differ-
ent program behavior patterns, due to intricate interactions between the type
systems and the dynamic optimizations performed by the JVM. The program
behavior also greatly depends on JVM implementation. In our tests we use Sun’s
HotSpotTM JVM and study both the client and the server mode. In Section 9
we discuss factors that contribute to program efficiency for different subsets of
specialized classes in both these modes of the JVM.

The specialization would be the most beneficial for computationally heavy
programs. It would allow programmers to take advantage of generic types and
not pay a high efficiency price due to the overhead of type erasure. Additionally,
this work may be of interest to programming language designers and JVM engi-
neers, as it discusses trade-offs between implementation of parameterized types
in dynamically interpreted languages and points out concrete inefficiencies of
implementations of Java generics, some of which may be approached by adjust-
ing JVM implementations. Software developers can also benefit from this study,
because it suggests how inefficiencies due to type erasure may be mitigated by
alternative design decisions.

2 Related work

Earlier proposals [6] and [3] laid out principles of implementing generics in
Java. Specific implementation proposals include, among others, GJ (e.g. [7])
which proposed the homogeneous (i.e type erasure) approach later adopted in
Java, NextGen (e.g. [1]) which proposed a combination of a heterogeneous (i.e.
a separate code copy for each type instantiation) and a homogeneous approach,
and [15] with an approach based on Java core reflection which requires an ex-
tension to the JVM. Unlike C# generic types [13], generic types in Java were
added without modifying the existing JVM. This leads to inability to provide full
support for operations on type variables, such as typecasting or array creation.

While recent research on static optimization of Java is not as widespread as
that of dynamic optimization, there are several works that discuss static transfor-
mations of Java code. [17] proposes a specialization based on partial evaluation
as a way of eliminating overhead of generic programming (not specifically generic
types). [5] proposes a static inlining optimization of Java program at the level of
bytecode, but does not specifically deal with generic types either. [18] proposes
a source code transformation that facilitates load-time handling of generic types
using Java core reflection with the goal of full support of operations on type
parameters of generic types. A recent work [16] presents a compiler that ac-
complishes such integration of generic type parameters within a standard JVM.
However, in both papers the focus is on full integration, and not on efficiency.

Our work is related to that of [1] in that it proposes a heterogeneous transla-
tion. However, it is unique in a sense that it explores a possibility of a selective
compile-time specialization of Java generic types in the framework of the cur-
rent Java generics implementation with the goal of increasing efficiency of the
program. While it adopts the heterogeneous approach which may lead to code
duplication, the transformation is intended to be performed only when it is
beneficial, and thus creates copies only of those classes and methods that are
promising for efficiency increase.

3 Overview of Specialization

A declaration of a generic class or a method specifies bounds for each type pa-
rameter. For instance,

public class Sort<T extends Comparable<T>> {...}

specifies Comparable<T> as the bound for the type parameter T . This means
that every valid instantiation of T must be a subtype of Comparable<X>. If no
bound is specified then the bound is assumed to be Object.

Generic types in Java are implemented using type erasure: after checking
type-correctness of the generic code, the compiler replaces all occurrences of a
type parameter within its scope by its type bound. This creates a uniform repre-
sentation of each generic class or method. Type casts are inserted automatically
so that at run time an attempt to assign an object of a wrong instance type to a

variable results in a ClassCastException. The generated bytecode instructions
are not specific to the type parameters1, so the type information is said to be
erased.

There are two main sources of overhead due to type erasure: unnecessary
type casts and the inability of the JVM to perform type-specific optimizations
based on the actual type parameter. As an example, consider the following code:

ArrayList<String> l = new ArrayList<String>();
.....
String s = l.get(0);

Since ArrayList is implemented as a “type-erased” copy, the type returned
from get is Object, and the compiler inserts the cast to String, making the
assignment equivalent to

String s = (String) l.get(0);

which requires a typecheck. An implementation of ArrayList that is specific to
strings would return a String from get and thus would not require a typecheck.

Type erasure may also introduce an overhead of dynamic method lookup. For
instance, if ArrayList<String> is passed to a method that takes a parameter of
the type ArrayList<T>, where T is bound by Object, the call l.get(0).toString()
would produce a non-trivial method lookup. Since get returns an Object, the
target of the call to the method toString is unknown and requires a dynamic
resolution.

Providing more precise type information opens opportunities for method call
optimization. For instance, in the above example if a dynamic compiler can
deduce that a method call is on a string, there is only one target for the call.
Then the compiler may devirtualize the call, replacing it with a direct call to
String’s toString method, or even inline the method (e.g. [12]).

Method call optimization is also possible when a call is made on a variable
of an interface type. In this case a compiler first may perform a virtualiza-
tion of an interface call, i.e. replace invokeinterface bytecode instruction by
invokevirtual ([2]), and then devirtualize or inline the call.

4 Specialization Algorithm

The essence of our proposed transformation which we call type bound special-
ization is to create a copy of a generic type with the type bound replaced by
the actual instance of the type used in the program. For instance, if a class
ArrayList is declared as

public class ArrayList<E>

1 Some information about type parameters is preserved in method signatures, but not
in bytecode instructions themselves

then its bound is Object. If there is an object of the type ArrayList<Integer>
used in the program then the transformation creates a specialized copy of ArrayList
with an Integer bound:

public class ArrayListInteger<E extends Integer>

All references to ArrayList<Integer> are then replaced by the specialized class
ArrayListInteger<Integer>.

Different versions of the transformation may specialize different subsets of
the type hierarchy. In the remainder of this section we present an algorithm for
optimizing a program given a “target” type - the highest point in a program’s
type hierarchy that we would like to specialize. We discuss correctness of the
transformation. In Section 5 we compare efficiency of specializations with dif-
ferent target classes using classes from the the Java Collections library as an
example.

4.1 General applicability

Type specialization is a whole-program transformation: it requires the entire
source of the program is available. Since type names are modified in the process
of specialization and references to old classes are replaced by references to their
specialized copies, dynamic class reloading or reflection of specialized classes or
classes that reference them may have undesired effects.

Both of these requirements, however, may be relaxed if it is known that only a
subset of a program uses types that are going to be specialized so the source code
of the remaining classes is not required and they may be dynamically reloaded. If
only a small portion of the hierarchy will be specialized, fewer classes are subject
to these restrictions. We also note that the optimization is the most beneficial
for computationally heavy non-interactive programs which are unlikely to use
dynamic loading or reflection.

4.2 Complete and Partial Specializations

A straightforward specialization algorithm would specialize every parameterized
type in a program to all type instances that the type or its subtypes are used
with. We call such a specialization complete. However, this would result in a
substantial code duplication and may be undesirable for the reasons explained
in Section 4.1. Additionally it may interfere with code encapsulation since it
requires specializing a large number of interfaces and is likely to affect the client
code. It may also introduce efficiency problems due to additional typecasting and
possible lengthening of JVM warmup time (see section 9 for details). Therefore
we would like to limit the number of classes affected by the specialization while
still gaining efficiency.

Java allows a subtype to have a more specific bound than that of its su-
pertype, opening a possibility of partial specializations, i.e. those that specialize
only the subset of a program’s type hierarchy that relates to modified classes.
For instance, consider the following type declaration

class ArrayList<E> extends AbstractList<E>
implements List<E>

(the bound of both AbstractList and List is Object). It is possible to create a
version of ArrayList specialized to Integer without specializing the other two
types2:

class ArrayListInteger<E extends Integer>
extends AbstractList<E> implements List<E>

We show that specializing only a small number of types may be just as efficient
as a complete specialization.

4.3 Notations and Assumptions

Java has a single class inheritance, but allows a type to be a subtype of multiple
interfaces. Thus a type hierarchy forms a lattice structure.

We assume that all variables referring to parameterized types, including for-
mal method parameters, are properly parameterized upon declaration. For in-
stance a variable for an ArrayList of Integers is declared as ArrayList<Integer>,
not as ArrayList.

For simplicity we do not specialize nested generic type instances, i.e. type
parameters that are in turn generic types, such as List<List<String>>. While
the algorithm may replace the inner list to a specialized version ListString, the
original non-specialized version of List would be used for the outer list, resulting
in List<ListString<String>>. Instances with nested type parameters are not
likely to be heavy in method calls on the type parameter, and thus are not
promising candidates for specialization in any case.

We also assume that classes that we attempt to specialize do not appear
as bounds in other generic types. For instance, T extends Comparable<T> is a
valid bound in our framework, but T extends ArrayList<T> is not.

By a program we mean the source code for all classes and interfaces used in a
given program. We assume that there is no dynamic loading (neither reloading
of classes nor reflection). As we pointed out in Section 4.1, these restrictions may
be relaxed in practice.

We use the following notations:

– T for any object (i.e. non-primitive) type.
– G for a name of a generic type.
– B for a type bound of a generic type. For instance, in the declaration class

ArrayList<E> the bound type is Object. In most cases the type bound is
a concrete type, i.e. a type that does not have any type variables. Another
common bound in our example is Comparable<T>. By the assumption above
types that we attempt to specialize do not appear as bounds of other types.

2 This approach does not work directly if the bound of List is Comparable<T> since
Integer is a not a valid substitute for G in this case. However, it still would be
possible to specialize the subclass by directly replacing all occurrences of G within
the class by Integer

– X for an instance type that may be a concrete type, a type that contains
type variables, or a type variable from an enclosing class or method scope.

– <: is used as a subtype notation: T1 <: T2 means that T1 is a subtype of T2.
T <: T holds for any T .

A scope of a class (or an interface) type variable is the entire declaration of
the class, excluding sections where the variable name is overshadowed by nested
declarations. Such declarations may be those of generic methods (a scope of a
method’s type variable is the entire method) or of inner classes. For more details
see Section 8 of [10].

By a statically-bound type of a variable or a method parameter or a con-
structor we mean the type derived for it by the static compiler with the type
parameters replaced by their type bounds in the current scope. For instance, a
statically-bound type of a variable declared as List<T> or of a method parameter
List<T>, where T is in the scope that defines it as an Object, is List<Object>.
The statically-bound type of the form G〈B〉 (such as ArrayList<Integer>) is
that type itself.

The algorithm uses type/bound pairs to record types that are candidates for
specialization and bounds that they would be specialized to. For instance, a pair
〈ArrayList,Integer〉 indicates that the class ArrayList would be specialized
to the bound Integer. The definition below uses such pairs.

Definition 1. Given a program P and two types T1, T2 in P such that T2 <: T1,
a downward closure of T1 to T2 in P , denoted DP (T1, T2), is a set of all types T
such that T <: T1 and T2 <: T .

Given a program P and a generic type G, a downward closure of G, denoted
DP (G), is the union of all sets of pairs 〈G̃, B〉 such that G̃ ∈ DP (G, Gi), where
Gi <: G such that there is a call to the constructor of a statically-bound type of
the type Gi〈B〉 in P .

We omit the subscript P when it is unimportant and just write D(T1, T2) and
D(G), respectively.

The definition allows us to find all descendants of a given generic type G used
in a program and all the bounds they are used with. If a descendant of G is not
used in the program, there is no need to specialize it. Since by our assumption
there is no reflection in the part of the type hierarchy relevant to the generic
types under consideration, the only way to create an instance of a type is via a
constructor.

As an example, consider the interface List. If in a program its descendant
ArrayList is used with Integer and String actual type parameters then the
downward closure includes 6 pairs: List, AbstractList, ArrayList, each paired
with Integer and String. The abstract class AbstractList is between List
and ArrayList in the type hierarchy.

We do not specialize generic methods, i.e. methods that declare their own
type parameter: a type of a generic method is determined via type inference
which complicates the algorithm. Studying effects of specializing individual generic
methods is a part of our future work. Our approach can handle wildcards whose

bounds are type parameters in the specialized classes, but other uses of wild-
cards are not yet supported. A full treatment of wildcards is future work (see
Section 10).

For simplicity we assume that each generic type has only one type parameter.
The algorithm can be easily generalized to a type with multiple parameters.

4.4 Specialization Algorithm.

Our presentation of the algorithm is somewhat informal. There are points in
the algorithm where multiple decisions are possible. These points may require
a user’s intervention. In section 4.5 we discuss possible user choices and their
implications.

The algorithm is given a program P and a target generic class or an interface
G. It is also possible to specify multiple independent (i.e one not a subset of
another) targets; the algorithm then specializes the program one target at a
time. We assume that the given program successfully compiles (possibly with
warnings).

The algorithm determines the minimal set of types that need to be specialized
in order to specialize the given target type to the bounds used in the program. The
target is a parameter for the algorithm. For instance, for the quicksort example
we get different results when we specify ArrayList and List as target bounds.
See Section 6.1 for details.

The algorithm checks whether the specialization guarantees to preserve the
behavior of the program. If some changes may potentially alter behavior, the al-
gorithm would proceed only if these changes are approved by the user, otherwise
it would stop and output failure (see Section 4.5 for details). If the analysis part
is successful (possibly with some user-approved changes), the algorithm produces
specialized copies of generic types, replaces references to non-specialized types
by those to their specialized copies, and performs other necessary changes.

The algorithm takes a program P and a target generic type G0 as an input.
Let B0 be the bound of G0. The algorithm performs the following steps:

1. Downward closure. Construct T = D(G0) according to Definition 1.
2. Propagation. Let 〈G, B〉 ∈ T and let G̃ be a generic class or an interface

for which at least one of the following holds:
– G̃ contains an instance (i.e. a non-static) variable of the statically-bound

type G〈B〉3.
– G̃ has a method with a local variable of the statically-bound type G〈B〉.
– G̃ has a method m such that in the program there is a call to m that

takes an actual parameter of the statically-bound type G〈B〉 or returns
an object of the statically-bound type G〈B〉, where a statically-bound
type of the return value is determined in the context where the method
is called.

3 The variable may also appear as an array type or a type of a parameter to another
generic type.

Then T = T ∪ {〈Ĝ, B〉 | 〈Ĝ, B〉 ∈ D(G̃)}, i.e we add all elements of the
downward closure of G̃ paired up with the bound B.
Note that G may be positioned anywhere in a type hierarchy, relative to
classes already included in T . In particular, it may be below such classes,
above such classes, be an inner class of one of such classes, or be completely
unrelated to any of them.
Repeat step 2 until no more types can be added to T .

3. Correctness Analysis. The procedure for determining whether an opti-
mization preserves program behavior and for keeping track of user choices
is given at the end of Section 4.5. If the procedure returns failure, the opti-
mization is halted. Otherwise the three lists returned by the procedure are
passed to step 4.

4. Specializing the program. The code transformation proceeds as follows:
(a) For each pair 〈G, B〉 in T :

i. create a copy of G with the name that is a concatenation of the names
of the type itself and of the bound (we refer to it as GB); replace the
bound of G by B. Change the names of constructors accordingly.

ii. Change the names of types that GB inherits from to their copies
specialized to B (if these types have been specialized).

iii. for each method m in G if there is a call to m anywhere in the
program with a formal parameter or a return value whose statically-
bound type is G〈B〉, replace this method’s parameter type by GB〈B〉.
Note that the calls may originate in the class G itself.

iv. If there are any static variables, ambiguous operations on raw types,
or any ambiguous references to other specialized types, follow deci-
sions made by the user in phase 3.

(b) In the rest of the program:
i. replace every call to a constructor of a non-specialized type G〈B〉 by

a call to the corresponding constructor of GB〈B〉.
ii. In each scope where 〈G, B〉 ∈ T and the statically-bound type of X

is B, replace each variable and each method parameter of type G〈X〉
by the type GB〈B〉.

Section 6.1 shows the work of the algorithm for two specializations of ArrayList
type hierarchy.

4.5 Correctness Issues and User’s Choices

The algorithm given in Section 4.4 detects cases when automatic changes to
the program are insufficient to specialize generic classes. In such cases the user
needs to know the intent of the program’s designer in order to chose the right
specialization strategy. Different user decisions in these cases may lead to differ-
ent program behavior. In most cases the difference would manifest itself only in
rare circumstances.

In this section we give a list of conditions when this may happen. More items
may be added to the list as our research covers more features (such as generic
methods or wildcards).

Features that may cause a behavior difference are:

1. Static variables are shared by all instances of a class. Specializing classes
separates their static data into multiple classes so it is no longer shared. For
instance, a class may have a static variable serialVersionUID for serial-
ization. Specializing the class duplicates the variable. This is not a problem
for our examples since the program does not use serialization. However, in
general it is impossible for the algorithm to guess the purpose of each static
variable so the user needs to decide whether the specialization should pro-
ceed.

2. Sometimes type erasure implementation forces use of raw (erased) types
instead of a type parameter. Two examples illustrate the issue:
– A collection with a formal type parameter T cannot use an array of type

T [] to store the data it contains. Instead, the array is declared to be of
the bound type, for instance Object. Specializing this code would require
a user input, since an algorithm cannot tell whether an array is meant
to be of type T or of Object.
This problem can manifest itself in two ways. An array may be declared
as type T . Alternatively, an array of the bound type may be used. If the
array is not declared as type T , it is changed to be so. Once the array
variable is of type T , a typecast is necessary in the array assignment:
this.elementData = (T[]) new

Object[initialCapacity];
Here elementData is of type T []. Since an array of type T (a type vari-
able) cannot be created directly, the declaration of the array must then
be changed to the new bound type. Additional typecasts to the new
bound type may need to be inserted for assignments to the array.

– Use of explicit typechecking or typecasting in methods such as equals
creates similar problems. Consider the following method in AbstractList
(this is an abstract class that implements interface List):
public boolean equals(Object o) {...

if (! (o instanceof List))
return false;

...}
If List is specialized as both ListInteger and ListString then in-
stances of AbstractList that are specialized to Integer and String
in the propagation phase are no longer in the same class, and are not
instances of the non-specialized type List. A program that relies on a
particular result of equals when comparing objects in different instan-
tiations of List may change its behavior. It is up to the user to decide
whether the List in the specialized AbstractList should be left as it
is or replaced by a specialized type. A similar issue arises with bounded
wildcards whose bound is the same as the bound of a generic type that
contains them.

3. If a program uses both a specialized and a non-specialized copy of a class G
and a method in another class G̃ takes an object of type G as a parameter,
then the question arises whether the method should take an object of the
specialized or non-specialized class.
Note that if there are calls to this method then often the type of the pa-
rameter would be determined during the propagation phase and G̃ itself will
be specialized. If there are no calls (either direct or via dynamic method
dispatch) to the method then any decision would do since no actual calls are
affected.
The problematic situation arises when the actual parameter types for the
method are obscured by using variable types higher in the type hierarchy
(for instance, the specialization target is ArrayList but the method call is
via a List interface parameter. In this case the user may decide, based on
the knowledge of the program’s design, to do one of the following:
– specialize the entire class G̃,
– create specialized copies of the method itself (currently our optimization

has not encountered cases like this, but it is an option for the future),
– decide to halt the specialization altogether (and possibly try for a higher

target).

Based on the above considerations, the correctness check procedure will return
one of the following:

– a token failure when the user decides not to optimize.
– A list ArrayTypes which contains the list of arrays whose type needs to be

changed from Bold[] to Bnew[], where Bold is the original bound of G, as
described in part 2 in the above discussion; a list TypeCasts that lists extra
type casts that need to be inserted because of the array type changes; and a
list Types that lists user-chosen ways of resolving type ambiguities described
in the second case of part 2 and in part 3.

5 Applications of the Algorithm to Java Collections

The Java Collections library provides a variety of parameterized classes. From
an implementation standpoint, these classes present intricate interconnections
via inheritance, interfaces, and inner classes. This makes specialization quite
challenging but instructive. We focus on specializing some frequently used classes
in the library: ArrayList, PriorityQueue, and TreeMap.

5.1 Test Data and Naming Conventions

Our examples use two user-defined classes, TestInteger and TestString which
implement the Comparable interface as data that is stored in the collections.
These classes are similar to Integer and String, with the primary difference
that each of them includes a static counter for counting the number of times
compareTo is called. Keeping track of the number of calls to compareTo is helpful

for some of our tests and also makes the method compareTo less prone to being
eliminated by unrelated run-time optimizations.

Names of specialized copies of classes are formed by concatenating the the
name of the new bound (sometimes abbreviated) at the end of the class name.
For instance, our copy of ArrayList which is specialized to TestInteger would
be named ArrayListInteger.

5.2 Partial Specializations: Classification and Notations.

The following conventions are used in the rest of the paper to denote different
kinds of partial type specializations:

– Original non-specialized programs are denoted by O.
– S stands for program with specialized “client” classes, i.e. classes that use a

given collection; the collection class itself is unspecialized.
– For referring to optimizations that specialize collections classes we use an

abbreviation of the highest type that is specialized. For instance, AL stands
for the transformation that specializes ArrayList class. If the subset has
more than one highest type, we include all highest types in the abbreviation.
For instance, the TME specialization in the TreeMap example specializes
unrelated TreeMap and Entry classes.

– Some specializations combine the two previous kinds: they specialize a part
of the collections hierarchy and also the class that uses the collections. In
these cases we add S to the specialization name.
Some specializations of collection classes require the “client” class to be
specialized as well. In this case we add S at the end of the name to stress
that the class that uses the collections is specialized, although there is no
counterpart of such a specialization without an S.

– A complete optimization, i.e. the one that specializes every parameterized
class, is denoted by C.

Our examples follow a traditional software design practice of accessing data
structures via interfaces in the “client” code. For instance, ArrayList is accessed
via its interface List. A specialization that uses such an interface as a target
type in the algorithm is called an interface specialization. Since the propagation
step in the algorithm requires that the “client” class is specialized as well, the
interface specialization specialization for ArrayList is denoted by LS and not
by L. Other interface specializations considered here are QS for PriorityQueue
and MS for TreeMap.

5.3 Testing Methodology and Run-time Environment.

We use the HotSpotTMJVM in both the client and the server modes. The client
mode is intended for shorter programs; it minimizes the startup time and mem-
ory footprint, but performs a smaller set of optimizations. The server mode is

intended for generating fast optimized code, but requires more time and memory
to optimize the program.

We observed significant differences in code behavior in the two modes. For
some versions of the specialization, the client JVM produced a slowdown of an
optimized program, compared to the original one, while the server JVM showed
improvement. In our work we mainly focus on optimizing for the server mode,
since it generally gives better total running times for long programs. However,
we also would like to at least avoid a slowdown in the client mode. We show that
certain versions of the specialization lead to a speed up in both modes.

The HotSpot JVM compiles frequently called methods to native code. Method
selection is based on profiling data collected during the run. Initially all methods
start executing in an interpreted mode. Once the number of calls to a method
reaches a certain threshold, the method is compiled. The client mode of the JVM
by default uses 500 calls as a threshold while in the server mode the default is
10,000 calls. The time that a JVM takes before it compiles a method to native
code is called warmup [11]. Since the time spent on dynamic compilation is in-
cluded in a program running time and is different for different specializations,
we measure total running times, including the JVM warmup, for fair comparison
between specializations.

We ran all tests under Fedora Core 7 on AMD AthlonTM64-bit 2GHz pro-
cessor. Both the compiler and the HotSpot JVM are version 1.6.0 04. We ran
each test in the client and the server modes 20 times each. We recorded the total
time the program spent in the user mode using the system time command and
plotted the results using a statistical package R [14].

5.4 Notations and code sample conventions.

In hierarchy diagrams we use UML notations. When a class is shown as “Name1.Name2”,
this represents Name2 as an inner class of Name1. Each object lists in paren-
theses which specializations it is changed in. On the diagrams and in examples
in the rest of the paper we ignore non-generic interfaces that some collections
implement, such as RandomAccess, Serializable, and Cloneable.

In the code samples we use our own copies of the ArrayList hierarchy. To
make sure that we do not accidentally use a library copy instead of our own, we
prefix names in this hierarchy with R, such as RArrayList instead of ArrayList.
Our tests sorted both TestIntegers and TestStrings. Consequently, the classes
in the ArrayList hierarchy had two specialized copies - one for TestInteger and
one for TestString. For simplicity in code samples below we show only types
specialized to TestInteger; TestString specialization is completely analogous.

6 A Quicksort Example Using ArrayList

We used ArrayList as data storage for a quicksort program. Since sorting is a
common component of many real-life programs and quicksort is a widely-used
implementation of sorting, this example emulates a typical use of generics in

real-life programs. Type hierarchy of ArrayList is represented in Figure 1 (see
section 5.4 for notations).

ArrayList
(AL, ALS, LS, C)

<<interface>>
List

(LS, C)

AbstractList
(LS, C)

<<interface>>
ListIterator

(C)

<<interface>>
Iterator

(C)

AbstractList.SubList
(C)

AbstractList.Random
AccessSubList

(C)

AbstractCollection
(C)

<<interface>>
Collection

(C)

<<interface>>
Iterable

(C)

Fig. 1. ArrayList Class Hierarchy

In the quicksort example, we call our test code via a main class, Measure-
Runtimes. This class creates the test data and a client Quicksort class we are
using. The program takes, as input, a number of arrays to create, a number of
elements to create and place into those arrays, and a number of times to sort
this data. We construct the given number of ArrayLists and fill these with
randomly generated TestIntegers and TestStrings, using a constant seed for
repeatability. We then call the sorting method of the quicksort class on this
randomly generated data.

public class MeasureRuntimes {
private static int ARRAY_SIZE, NUM_LOOPS, NUM_SORTS;

private static Random randomFactory;
private static RList<RList<TestInteger>> testIntegerCases =

new RArrayList<RList<TestInteger>>();

public static void main(String[] args) {
// [...]

time1 = ((double) System.currentTimeMillis()) / 1000.0;
insertItems(randomFactory);
sortCases();

time2 = ((double) System.currentTimeMillis()) / 1000.0;
System.out.println(time2 - time1);

// [...]
private static void insertItems(Random r) {

for (int i = 0; i < NUM_LOOPS; i++) {
RList<TestInteger> integers = new RArrayList<TestInteger>();
testIntegerCases.add(integers);

}

for (int j = 0; j < ARRAY_SIZE; j++) {
int rand = r.nextInt();
TestInteger tInt = new TestInteger(rand);
for (int i = 0; i < NUM_LOOPS; i++) {

testIntegerCases.get(i).add(tInt);
}

}
}

private static void sortCases() {
Quicksort<TestInteger> intSorter = new Quicksort<TestInteger>();
for (int s = 0; s < NUM_SORTS; s++) {

for (int i = 0; i < testIntegerCases.size(); i++) {
intSorter.sort(testIntegerCases.get(i));

}
}

}

// [...]
}

The quicksort example program we use contains a sort method which takes in
an interface List<T>. It sorts the data contained in this list according to the
quicksort algorithm as defined in [8]. These methods include calls to methods
such as set, get, and compareTo.

public class Quicksort<T extends Comparable<T>> {

public void sort(RList<T> inputList) {

// [...]

}

// [...]

}

Our first optimization is labelled S. This changes only the Quicksort class,
changing the type bound to the following:

public class QuicksortInteger<T extends TestInteger> {

private static void sortCases() {
QuicksortInteger<TestInteger> intSorter =

new QuicksortInteger<TestInteger>();
// [...]
}

This change alters the type parameter T throughout the class to be more specific.
The performance improvement comes from devirtualization of compareTo which
is enabled since the exact target of the method is now known.

Our optimization AL changes the ArrayList class, from the old type bound:

public class RArrayList<E> extends RAbstractList<E>
implements RList<E> {

to a newer, more specific bound:

public class RArrayListInteger<E extends TestInteger>
extends RAbstractList<E> implements RList<E> {

Once again, methods can call the class directly and retain type information, such
as in the following method:

private static void insertItems(Random r) {
for (int i = 0; i < NUM_LOOPS; i++) {

RList<TestInteger> integers =
new RArrayListInteger<TestInteger>();

// [...]
}

// [...]
}

Our third optimization is referred to as ALS, and combines both the changes
from AL and from S, specializing the two classes.

Our fourth optimization, LS, combines the changes from ALS with an opti-
mized interface List. This changes the following code:

public class RArrayList<E> extends RAbstractList<E>
implements RList<E> {
public abstract class RAbstractList<E> extends RAbstractCollection<E>
implements RList<E> {
public interface RList<E> extends RCollection<E> {

to

public class RArrayListInteger<E extends TestInteger> extends
RAbstractListInteger<E> implements RListInteger<E> {
public abstract class RAbstractListInteger<E extends TestInteger>
extends RAbstractCollection<E> implements RListInteger<E> {
public interface RListInteger<E extends TestInteger>
extends RCollection<E> {

This change also affects many methods, most of which pass data as the
interface class. For instance, the following sections of the MeasureRuntimes class
are altered:

private static RList<RList<TestInteger>> testIntegerCases =
new RArrayList<RList<TestInteger>>();

private static void insertItems(Random r) {
RList<TestInteger> integers = new RArrayList<TestInteger>();

}

private static void sortCases() {
Quicksort<TestInteger> intSorter = new Quicksort<TestInteger>();

}

to:

private static RList<RListInteger<TestInteger>> testIntegerCases =
new RArrayList<RListInteger<TestInteger>>();

private static void insertItems(Random r) {
RListInteger<TestInteger> integers =

new RArrayListInteger<TestInteger>();
}

private static void sortCases() {
QuicksortInteger<TestInteger> intSorter =

new QuicksortInteger<TestInteger>();
}

}

The final optimization that we consider is a complete optimization, C. In
addition to the LS changes, the following classes were changed:

public class RArrayList<E> extends RAbstractList<E>
implements RList<E> {

public abstract class RAbstractList<E>
extends RAbstractCollection<E> implements RList<E> {

public abstract class RAbstractCollection<E>

implements RCollection<E> {
public interface RCollection<E> extends

research.lang.RIterable<E> {
public interface RIterable<T> {
public interface RList<E> extends RCollection<E> {
public interface RListIterator<E> extends RIterator<E> {
public interface RIterator<E> {

These classes appear, in the complete optimization, as follows:

public class RArrayListInteger<E extends TestInteger> extends
RAbstractListInteger<E> implements RListInteger<E> {

public abstract class RAbstractListInteger<E extends TestInteger>
extends RAbstractCollectionInteger<E> implements RListInteger<E> {

public abstract class RAbstractCollectionInteger<E extends TestInteger>
implements RCollectionInteger<E> {

public interface RListInteger<E extends TestInteger> extends
RCollectionInteger<E> {

public interface RCollectionInteger<E extends TestInteger>
extends research.lang.RIterableInteger<E> {

public interface RIterableInteger<T extends TestInteger> {
public interface RListIteratorInteger<E extends TestInteger>

extends RIteratorInteger<E> {
public interface RIteratorInteger<E extends TestInteger> {

We also studied the effects of passing parameters to methods in different
forms. Specifically, we examine the difference between passing a parameter of
the actual type ArrayList to a method with the formal parameter of an interface
type List and passing it to a method with a formal parameter ArrayList. We
call the latter mechanism a direct parameter passing since the parameter
does not change its type in the process. The code is altered such that whenever
a List would be used in the original example, an ArrayList is used instead. This
caused significant differences in performance. The following fragment from the
measurement class shows the differences:

private static RArrayList<RArrayList<TestInteger>> al_IntegerCases =
new RArrayList<RArrayList<TestInteger>>();

private static RArrayList<RArrayList<TestString>> al_StringCases =
new RArrayList<RArrayList<TestString>>();

public static void main(String[] args) {
time1 = ((double) System.currentTimeMillis()) / 1000.0;
insertItemsAL(randomFactory);
sortCasesAL();
time2 = ((double) System.currentTimeMillis()) / 1000.0;
System.out.println(time2 - time1);

}

private static void insertItemsAL(Random r) {
for (int i = 0; i < NUM_LOOPS; i++) {

al_IntegerCases.add(new RArrayList<TestInteger>());
}

for (int j = 0; j < ARRAY_SIZE; j++) {
int rand = r.nextInt();
TestInteger tInt = new TestInteger(rand);
for (int i = 0; i < NUM_LOOPS; i++) {

al_IntegerCases.get(i).add(tInt);
}

}
}

private static void sortCasesAL() {
Quicksort<TestInteger> intSorter = new Quicksort<TestInteger>();
Quicksort<TestString> stringSorter = new Quicksort<TestString>();
for (int s = 0; s < NUM_SORTS; s++) {

for (int i = 0; i < al_IntegerCases.size(); i++) {
intSorter.sortAL(al_IntegerCases.get(i));

}
for (int i = 0; i < al_StringCases.size(); i++) {

stringSorter.sortAL(al_StringCases.get(i));
}

}
}

public void sortAL(RArrayList<T> inputList) {
quicksortAL(inputList, 0, inputList.size() - 1);

}

6.1 Applications of the Algorithm to Quicksort Example

In this section we consider our original set of examples with a list parameter
passed as via an interface formal parameter, not via direct passing. The work of
the algorithm with ArrayList as the target (AL case) is as follows:

1. T = {<ArrayList, TestInteger>,<ArrayList, TestString>}. The down-
ward closure only contains ArrayList since no other type extends it.

2. Propagation: no generic classes reference ArrayList.
3. Decisions that the user made: ignore the static variable serialVersionUID.

The list ArrayTypes returned from the correctness-checking procedure con-
tains Object[] arrays created in ArrayList constructors and several other
methods. These arrays are assigned to the variable of the type E[], where E is

the type parameter. Thus in the specialized classes they need to be changed
to the new bound type: TestInteger[] or TestString[] respectively. There
are no additional typecasts or type ambiguities in this case.

4. Create the specialized classes ArrayListInteger and ArrayListString with
the bounds set to TestInteger and TestString, respectively. In the main
class change the calls to the constructors accordingly. In the new specialized
classes perform the array type changes as specified in ArrayTypes.

The work of the algorithm with List as the target (LS case) is as follows:

1. T = {<ArrayList, TestInteger>, <ArrayList, TestString>,
<AbstractList, TestInteger>, <AbstractList, TestString>,
<List, TestInteger>, <List, TestString>}. ArrayList class is included
based on calls to the constructor and AbstractList is on the path from List
to ArrayList.

2. Add to T classes with methods that take AbstractList as a parameter:
SubList, RandomAccessSubList; classes that take List as a method pa-
rameter: Quicksort. All of these classes are added with both TestInteger
and TestString bounds.

3. The same issues as for AL specialization. Additionally there is an ambiguity
in constructors of the two sublist classes that take AbstractList as a pa-
rameter, and there is no call in the program to determine the correct type;
we decided to specialize the parameter.

4. The same changes to ArrayList as in AL specialization; analogous changes
to AbstractList, List, Quicksort, and to the two sublists; references
in the main class are changed to the corresponding specialized classes, e.g.
ListInteger<TestInteger> and QuicksortInteger<TestInteger>.

6.2 Tests and Results

The results of the test runs are presented in Figures 2 (server mode) and 3 (client
mode) and are summarized in the Table 1. Thick black lines on the graphs denote
the median, quartiles are marked by the thin lines, and the circles denote outliers.

In server mode, LS and C have the best performance, improving over O by
10-15%. C is slightly slower than LS because of the JVM warmup of constructors.
The main sources of their speed-up are the static factors described in Section 9
and the fact that a dynamic check of a parameter for set method is eliminated
because the parameter is passed as TestInteger.

As it is easy to notice, AL specialization causes a very significant slowdown
(by 25%). The reason for this is that the parameter (ArrayListInteger object)
is passed to methods sort, etc. of the non-specialized Quicksort class as a non-
specialized List. Therefore compareTo is called via invokeinterface. Moreover,
passing a TestInteger to set method prevents elimination of dynamic method
lookup since the set method of List takes any Comparable, and finding the

1−C 2−LS 3−ALS 4−AL 5−S 6−O

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

Server: Quicksort Optimizations

C
P

U
 T

im
e

(s
ec

.)

Fig. 2. Results of Quicksort specializations, server mode

right method requires a type check. Iterating over just set or add methods
(without any other calls) produces a similar slowdown for AL, whereas iterating
over just get (which has no object parameters) does not. ALS performs better
than AL because of static devirtualization of compareTo and the fact that the
type parameter to set is known to be a TestInteger. In fact, in server mode
set in ALS performs significantly better than in any of the other specializations.
See section 9.1 for details.

S has advantages of static devirtualization of compareTo and of passing a
parameter to set known to be a TestInteger. However, it does not have static

Name Server Time (sec) Server % Speedup Client Time (sec) Client % Speedup

O 5.91 - 12.49 -

S 5.19 12.13 11.53 7.65

AL 7.38 -24.96 14.59 -16.80

ALS 4.80 18.83 11.63 6.90

LS 4.83 18.29 11.15 10.71

C 4.80 18.83 11.16 10.68
Table 1. Quicksort Results; percentage time decrease relative to Original

1−C 2−LS 3−ALS 4−AL 5−S 6−O

11
12

13
14

Client: Quicksort Optimizations

C
P

U
 T

im
e

(s
ec

.)

Fig. 3. Results of Quicksort specializations, client mode

typecasting elimination for the result of get, and thus performs worse than C
and LS.

In client mode, LS and C still have the best performance, improving over O
by close to 11%. AL causes a slowdown similar to that in the server mode for
the same reasons. Both S and ALS give a modest improvement close to 7%.

The results for the case of a direct parameter passing are summarized
in table 2 and figures 4 and 5. They show a performance improvement in all
specializations. In the server mode, ALS, LS, and C give a drastic improvement
of approximately 22%. S does not have advantage of dynamic optimizations
within the ArrayList class, such as inlining, resulting in a moderate 6% time

Name Server Time (sec) Server % Speedup Client Time (sec) Client % Speedup

O 5.74 - 10.45 -

S 5.37 6.54 8.94 14.42

ALS 4.46 22.36 8.61 17.60

LS 4.48 21.97 8.64 17.36

C 4.45 22.44 8.70 16.77
Table 2. Quicksort Results with Direct Parameter Passing; percentage time decrease
relative to Original

1−C 2−LS 3−ALS 4−S 5−O

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4

5.
6

5.
8

Server: Quicksort Optimizations, direct passing

C
P

U
 T

im
e

(s
ec

.)

Fig. 4. Results of Quicksort specializations with direct parameter passing, server mode

decrease. Similar results are seen in the client mode: ALS, LS, and C all improve
over O by approximately 17% and the S specialization improves performance by
14%.

7 Optimizations of the PriorityQueue Example

We now present a specialization example utilizing PriorityQueue. The type
hierarchy for the PriorityQueue class is shown in Figure 6.

We tested the PriorityQueue classes by passing in three parameters: the
number of queues to create, the number of elements to place in each queue, and
the number of times to iterate over these queues. We created copies of queues
parameterized to both TestInteger and TestString:

public class MeasureRuntimes {

private static RList<RQueue<TestInteger>> testIntegerCases
= new RArrayList<RQueue<TestInteger>>();

private static RList<RQueue<TestString>> testStringCases
= new RArrayList<RQueue<TestString>>();

1−C 2−LS 3−ALS 4−S 5−O

8.
5

9.
0

9.
5

10
.0

10
.5

Client: Quicksort Optimizations, direct passing

C
P

U
 T

im
e

(s
ec

.)

Fig. 5. Results of Quicksort specializations with direct parameter passing, client mode

private static TestInteger[][] intContent;
private static TestString[][] stringContent;

private static int numLoops;
private static int numQueues;
private static int queueSize;

public static void testQueues(RList<RQueue<TestInteger>> intQueue,
RList<RQueue<TestString>> strQueue, int numLoops){

createContentArrays();
QueueTester<TestInteger> intTester = new QueueTester<TestInteger>();
QueueTester<TestString> strTester = new QueueTester<TestString>();
for (int s = 0; s < numLoops; s++) {

resetQueues();
for(int i = 0; i < intQueue.size(); i += 2){

intTester.compareQueues(intQueue.get(i), intQueue.get(i+1));
}
for(int i = 0; i < strQueue.size(); i += 2){

strTester.compareQueues(strQueue.get(i), strQueue.get(i+1));
}

}

Fig. 6. PriorityQueue Class Hierarchy

}

public static void createContentArrays(){
intContent = new TestInteger[2][queueSize];
stringContent = new TestString[2][queueSize];
for(int i = 0; i < queueSize; i++){

int rand = r.nextInt();
intContent[i%2][i] = new TestInteger(rand);
stringContent[i%2][i] = new TestString("" + rand);
rand = r.nextInt();
intContent[(i+1)%2][i] = new TestInteger(rand);
stringContent[(i+1)%2][i] = new TestString("" + rand);

}

public static void resetQueues(){
testIntegerCases.clear();

// [...]
int rand;
for(int i = 0; i < numQueues/2; i++){

RQueue<TestInteger> intQueueZero = new RPriorityQueue<TestInteger>();
RQueue<TestString> strQueueZero = new RPriorityQueue<TestString>();
for(int j = 0; j < queueSize; j++){

intQueueZero.add(intContent[0][j]);
strQueueZero.add(stringContent[0][j]);

// [...]
}

// [...]
testIntegerCases.add(intQueueZero);

testStringCases.add(strQueueZero);
}

}
}

PriorityQueue in the original form stores data in an Object[]:

private transient Object[] queue;

When using queues, this class takes queues two at a time and compares the
top element of each. It then removes the element with the higher value. This is
repeated until one of the queues becomes empty:

public RQueue<T> compareQueues(RQueue<T> first, RQueue<T> second){
while(!first.isEmpty() && !second.isEmpty()){

if(first.peek().compareTo(second.peek()) > 0){
firstCounter++;
first.remove();

}else {
secondCounter++;
second.remove();

}
}
return (firstCounter > secondCounter) ? first : second ;

}

This example uses the PriorityQueue methods add for inserting elements and
isEmpty, peek, and remove in the client class, along with calling compareTo on
the elements in each queue.

There are several other classes that are also important for the PriorityQueue
example:

public abstract class RAbstractCollection<E> implements RCollection<E>
public abstract class RAbstractQueue<E> extends RAbstractCollection<E>

implements RQueue<E>
public interface RCollection<E> extends RIterable<E>
public interface RComparator<T>
public interface RIterable<T>
public interface RIterator<E>
public interface RQueue<E> extends RCollection<E>
public interface RSet<E> extends RCollection<E>
public interface RSortedSet<E> extends RSet<E>

We compare four different optimizations of this example given below. All the
optimizations (except O) involve changing the storage array type from Object[]
to E[], as described at the end of Section 4.5. The unchanged optimization, O,
is identical to the code described above.

The PQ optimization changes the PriorityQueue class only:

public class RPriorityQueueInteger<E extends TestInteger>
extends RAbstractQueue<E>

private transient E[] queue;

public static void resetQueues(){
for(int i = 0; i < numQueues/2; i++){

RQueue<TestInteger> intQueueZero = new
RPriorityQueueInteger<TestInteger>();

RQueue<TestInteger> intQueueOne = new
RPriorityQueueInteger<TestInteger>();

}
}

The QS specialization is an interface specialization with a target interface
Queue. The client class is specialized as well. The following changes are made:

public class QueueTesterInteger<T extends TestInteger> {
public RQueueInteger<T> compareQueues(RQueueInteger<T> first,

RQueueInteger<T> second)
public abstract class RAbstractQueueInteger<E extends TestInteger>
extends RAbstractCollection<E> implements RQueueInteger<E>
public class RPriorityQueueInteger<E extends TestInteger> extends

RAbstractQueueInteger<E>
public interface RQueueInteger<E extends TestInteger>

extends RCollection<E>

public class MeasureRuntimes {
private static RList<RQueueInteger<TestInteger>> testIntegerCases = new

RArrayList<RQueueInteger<TestInteger>>();
private static RList<RQueueString<TestString>> testStringCases = new

RArrayList<RQueueString<TestString>>();

public static void testQueues(RList<RQueueInteger<TestInteger>> intQueue,
RList<RQueueString<TestString>> strQueue, int numLoops){

createContentArrays();
QueueTesterInteger<TestInteger> intTester = new

QueueTesterInteger<TestInteger>();
QueueTesterString<TestString> strTester = new

QueueTesterString<TestString>();
// [...]

}

public static void resetQueues(){
// [...]

for(int i = 0; i < numQueues/2; i++){
RQueueInteger<TestInteger> intQueueZero = new

RPriorityQueueInteger<TestInteger>();
RQueueInteger<TestInteger> intQueueOne = new

RPriorityQueueInteger<TestInteger>();
}

// [...]
}

// [...]
}

The complete specialization, C, makes the same changes to the testing and
client classes as in QS and additionally specializes the following Collections
classes:

public abstract class RAbstractCollectionInteger<E extends TestInteger>
implements RCollectionInteger<E>

public abstract class RAbstractQueueInteger<E extends TestInteger>
extends RAbstractCollectionInteger<E> implements RQueueInteger<E>

public interface RCollectionInteger<E extends TestInteger> extends
RIterableInteger<E>

public interface RComparatorInteger<T extends TestInteger>
public interface RIterableInteger<T extends TestInteger>
public interface RIteratorInteger<E extends TestInteger>
public class RPriorityQueueInteger<E extends TestInteger> extends

RAbstractQueueInteger<E>
public interface RQueueInteger<E extends TestInteger>

extends RCollectionInteger<E>
public interface RSetInteger<E extends TestInteger>

extends RCollectionInteger<E>
public interface RSortedSetInteger<E extends TestInteger>

extends RSetInteger<E>

The results are given in Figures 7 and 8 and summarized in Table 3.

Name Server Time (sec) Server % Speedup Client Time (sec) Client % Speedup

O 13.31 - 18.69 -

PQ 11.17 16.04 15.03 19.53

QS 10.87 18.3 14.38 23.05

C 10.88 18.27 14.40 22.92
Table 3. PriorityQueue Testing

In both modes all three optimizations benefit from typecasting elimination
and devirtualization of compareTo within the PriorityQueue class. PQ performs
extra typechecking in the non-specialized client class which makes it slightly

1−C 2−QS 3−PQ 4−O

11
.0

11
.5

12
.0

12
.5

13
.0

13
.5

Comparing Priority Queue Optimizations, Java 6

C
P

U
 T

im
e

(s
ec

.)

Fig. 7. Results of PriorityQueue specializations, server mode

slower than PQS and QS. QS and C show nearly identical results which shows
that an interface optimization may be sufficient to achieve the full potential of
specialization without a large code duplication. A very slight slowdown of C
compared to QS may be due to a JVM warmup, but the time differences are not
significant enough to make conclusions.

8 Optimizations of the TreeMap Example

In this section we present a specialization example using TreeMap. The type
hierarchy for the TreeMap class is shown in Figure 9. TreeMap stores its elements
as a red-black tree. The TreeMap class is parameterized to <K, V>, where an inner
class Entry stores keys of type K and values of type V:

public class RTreeMap<K,V> extends RAbstractMap<K,V>
implements RSortedMap<K,V>

Entry is parameterized (independently of TreeMap) to <K, V>:

static class REntry<K,V> implements RMap.REntry<K,V>

Elements are inserted into TreeMap through the put method. The method re-
balances the tree if needed by calling K.compareTo and several private methods.

1−C 2−QS 3−PQ 4−O

14
15

16
17

18
19

Comparing Priority Queue Optimizations, Java 6

C
P

U
 T

im
e

(s
ec

.)

Fig. 8. Results PriorityQueue specializations, client mode

As in the previous examples, we used a variety of classes and methods in the
testing code and observed a variety of different effects of the optimizations.

We pass into the test program parameters listing the number of trees, the
number of elements in each tree, and the number of times to iterate over the
trees when testing performance. The times we measure are the time it takes to
insert these values into trees and then retrieve those values repeatedly:

public class MeasureRuntimes {

private static int numLoops, numMaps, mapSize;
private static TestInteger[] keys;
private static TestString[] values;
private static List<RMap<TestInteger, TestString>> maps;
private static TreeReader<TestInteger, TestString> mapReader;
// [...]
public static void main(String[] args) {
// [...]

mapReader = new TreeReader<TestInteger, TestString>();
createContents();

// [...]
time1 = ((double) System.currentTimeMillis() / 1000.0);

Fig. 9. TreeMap Class Hierarchy

testFull();
time2 = ((double) System.currentTimeMillis() / 1000.0);
System.out.println(time2-time1);

// [...]
}

We create the set number of keys, values, and trees before beginning timing.
We use TestIntegers as keys and TestStrings as values:

public static void createContents(){
keys = new TestInteger[mapSize];
for(int i = 0; i < mapSize; i++){

keys[i] = new TestInteger(i);
}
values = new TestString[mapSize];
for(int i = 0; i < mapSize; i++){

int val = r.nextInt();
values[i] = new TestString(val + "");

}
maps = new ArrayList<RMap<TestInteger, TestString>>();
for(int i = 0; i < numMaps; i++){

maps.add(new RTreeMap());
}

}

We time how long it takes to fill all trees and then iterate over them:

public static void testFull(){
fillMaps();

for(int i = 0; i < numLoops; i++){
for(int j = 0; j < numMaps; j++){

mapReader.chartMap(maps.get(j));
}

}
}

public static void fillMaps(){
for(int i = 0; i < numMaps; i++){

for(int j = 0; j < mapSize; j++){
maps.get(i).put(keys[j], values[((j*7919)/(i+5))%mapSize]);

}
}

}

The test code uses Set and Iterator classes to iterate over keys. The method
get is used to obtain values from a TreeMap, and compareTo method is called
on the values. The client class is originally parameterized as <K, V extends
Comparable<V>>:

public class TreeReader<K, V extends Comparable<V>> {

public static int sailors;
// [...]

public Comparable<V> chartMap(RMap<K, V> map){
sailors++;
RSet<K> keys = map.keySet();
RIterator<K> keyIterator = keys.iterator();
V buriedTreasure = map.get(keyIterator.next());
while(keyIterator.hasNext()){

V value = map.get(keyIterator.next());
if(value.compareTo(buriedTreasure) > 0){

buriedTreasure = value;
}

}
return buriedTreasure;

}
}

Since the class hierarchy of TreeMap includes many different classes, a com-
plete specialization of it would be quite complex so it was not performed. There
are numerous possibilities for combining different optimizations; we selected a
subset of them. We tested several optimizations that specialize subsets of this hi-
erarchy. In total, we tested seven different versions of the program. The original
(referred to as O) uses all code identical to that listed above. There are several
other important classes as well:

public abstract class RAbstractMap<K,V> implements RMap<K,V>
public interface RSortedMap<K,V> extends RMap<K,V>
public interface RMap<K,V>

interface REntry<K,V>
public interface RSet<E> extends RCollection<E>
public abstract class RAbstractSet<E> extends RAbstractCollection<E>

implements RSet<E>

In our first optimization, S, we only change the TreeReader class, changing
the type bound to TestInteger for keys and TestString for values:

public class TreeReaderIS<K extends TestInteger, V extends TestString
private static TreeReader<TestInteger, TestString> mapReader;

For the TMS optimization, we change the type bound in both the TreeReader
and TreeMap classes, as can be seen in the following samples:

public class TreeReaderIS<K extends TestInteger, V extends TestString>
public class RTreeMapIS<K extends TestInteger,V extends TestString>
extends RAbstractMap<K,V> implements RSortedMap<K,V>
private static TreeReaderIS<TestInteger, TestString> mapReader;

public static void createContents(){
// [...]

for(int i = 0; i < numMaps; i++){
maps.add(new RTreeMapIS());

}
// [...]

}

Changing from O to TMES requires the same changes to TreeReader and
TreeMap as TMS. Addtionally, we modify the class REntry to TestInteger and
TestString bounds:

public class TreeReaderIS<K extends TestInteger, V extends TestString>
public class RTreeMapIS<K extends TestInteger,V extends TestString>
extends RAbstractMap<K,V> implements RSortedMap<K,V>
private static TreeReaderIS<TestInteger, TestString> mapReader;

public static void createContents(){
// [...]

for(int i = 0; i < numMaps; i++){
maps.add(new RTreeMapIS());

}
// [...]

}
static class REntry<K extends TestInteger,V extends TestString>
implements RMap.REntry<K,V> {

Optimizing more of the hierarchy than TMES, SMS specializes the interface
RSortedMapIS as well as the abstract class RAbstractMapIS. This is in addition
to the rest of the optimization that TMES does.

public class TreeReaderIS<K extends TestInteger, V extends TestString>
public class RTreeMapIS<K extends TestInteger,V extends TestString>
extends RAbstractMapIS<K,V> implements RSortedMapIS<K,V>
public interface RSortedMapIS<K extends TestInteger,V extends TestString>
extends RMap<K,V>
public abstract class RAbstractMapIS<K extends TestInteger,V extends TestString>
implements RMap<K,V>
private static TreeReaderIS<TestInteger, TestString> mapReader;

public static void createContents(){
// [...]

for(int i = 0; i < numMaps; i++){
maps.add(new RTreeMapIS());

}
// [...]

}
static class REntry<K extends TestInteger,V extends TestString>
implements RMap.REntry<K,V> {

MS optimizes the TreeReader class, much like S does. However, it also mod-
ifies the MeasureRuntimes class to use RMapIS, which has been optimized to the
TestInteger and TestString bounds.

public class TreeReaderIS<K extends TestInteger, V extends TestString> {
public int chartMap(RMapIS<K, V> map){

// [...]
}

}

public class MeasureRuntimes {
private static List<RMapIS<TestInteger, TestString>> maps;

mapReader = new TreeReaderIS<TestInteger, TestString>();

public static void createContents(){
maps = new ArrayList<RMapIS<TestInteger, TestString>>();
for(int i = 0; i < numMaps; i++){

maps.add(new RTreeMapIS());
}

}
}

public class RTreeMapIS<K extends TestInteger,V extends TestString>
extends RAbstractMapIS<K,V> implements RSortedMapIS<K,V>

static class REntry<K extends TestInteger,V extends TestString>
implements RMapIS.REntry<K,V> {
public abstract class RAbstractMapIS<K extends TestInteger,V
extends TestString> implements RMapIS<K,V>
public interface RSortedMapIS<K extends TestInteger,V extends TestString>
extends RMapIS<K,V>
public interface RMapIS<K extends TestInteger,V extends TestString>

interface REntry<K extends TestInteger,V extends TestString> {

The final optimization MSetS takes everything MS has optimized as well as
optimizing the interface RSetInteger and abstract class RAbstractSetInteger.

public class TreeReaderIS<K extends TestInteger, V extends TestString> {
public int chartMap(RMapIS<K, V> map){

// [...]
}

}

public class MeasureRuntimes {
private static List<RMapIS<TestInteger, TestString>> maps;

mapReader = new TreeReaderIS<TestInteger, TestString>();

public static void createContents(){
maps = new ArrayList<RMapIS<TestInteger, TestString>>();
for(int i = 0; i < numMaps; i++){

maps.add(new RTreeMapIS());
}

}
}

public class RTreeMapIS<K extends TestInteger,V extends TestString>
extends RAbstractMapIS<K,V> implements RSortedMapIS<K,V>

public RSetInteger<K> keySet() {
static class REntry<K extends TestInteger,V extends TestString>

implements RMapIS.REntry<K,V> {
public abstract class RAbstractMapIS<K extends TestInteger,V
extends TestString> implements RMapIS<K,V>
public interface RSortedMapIS<K extends TestInteger,V
extends TestString> extends RMapIS<K,V>
public interface RMapIS<K extends TestInteger,V extends TestString>

interface REntry<K extends TestInteger,V extends TestString>
public interface RSetInteger<E extends TestInteger> extends RCollection<E>
public abstract class RAbstractSetInteger<E extends TestInteger>
extends RAbstractCollection<E> implements RSetInteger<E>

– O - original, non-optimized program. All bounds (for both K and V) are
Object. The TestTM class is bound by <K, V extends Comparable<V>>.

– S specializes only the client class TestTM.

– TMS specializes TreeMap and TestTM.

– TMES specializes TreeMap, TreeMap.Entry, and TestTM.

– SMS specializes TestTM, TreeMap, SortedMap, and AbstractMap.

– MS specializes TestTM, TreeMap, AbstractMap, SortedMap, and also Map,
Map.Entry, and TreeMap.Entry.

– MSetS specializes the same classes as MS and additionally the Set class is
specialized to TestInteger.

Both MS and MSetS are considered interface specializations. SMS also specializes
an interface, but it is not considered an interface specialization since the interface
is not the one used in the client class to access TreeMap.

The results of TreeMap specializations are shown in Figures 10 (server) and 11
(client) and summarized in Table 4.

By specializing the key type to <K extends TestInteger>, we enable devir-
tualization of the call to TestInteger.compareTo. However, at least two prob-
lems exist with this specialization. The call to compareTo in TreeMap typecasts
the keys to Comparable before calling compareTo. The overhead of the virtual
method call is optimized away by the server mode but not in the client mode.
Additionally, many methods in TreeMap (such as containsKey, containsValue,
and others) pass keys and values as Object, typecasting them back into a K or
V. While this is a trivial cast in the non-specialized version of TreeMap, in a
specialized the cast to K or V becomes non-trivial. Thus programs heavy in calls
to put and similar methods benefit less from the specialization. As we observe,
the results of a test with a lot of calls get produce speed-ups of up to 20% for
optimizations that specialize the TreeMap.Entry class. We also observed that
some optimizations have a wide range of running times in server mode. One
possible explanation is memory allocation variations.

Name Server Time (sec) Server % Speedup Client Time (sec) Client % Speedup

O 6.64 - 10.88 -

S 6.55 1.39 10.98 -0.88

TMS 6.70 -0.87 9.29 17.18

TMES 5.76 15.44 8.58 26.86

SMS 6.75 -1.59 9.34 16.53

MS 5.89 12.83 8.55 27.29

MSetS 5.83 14.03 8.61 26.35
Table 4. TreeMap Testing

1−MSetS 2−MS 3−SMS 5−TMS 6−S 7−O

5.
6

5.
8

6.
0

6.
2

6.
4

6.
6

6.
8

Server: TreeMap Optimizations

C
P

U
 T

im
e

(s
ec

.)

Fig. 10. Results of TreeMap specializations, server mode

9 Effects of Specialization

9.1 Testing Individual Methods.

An important goal of our research is to understand how various elements of the
generic type hierarchy are affected by each kind of a specialization. In order to
study such effects we created a simplified version of a program similar to the
quicksort program.

The program tests the same five versions of the specialization (where the
sixth version is the original program). In fact, the program uses the same spe-
cialized classes in the ArrayList hierarchy as the quicksort, does with the only
difference that for simplicity for these tests we use only classes that are spe-
cialized to Integer, not to String. Our studies show that, as expected, classes
specialized to String behave the same as those specialized to Integer in terms
of relative performance of different versions of the specialization (although the
absolute numbers differ). Also we have observed that JVM warmup and other
overhead related to class duplication is insignificant and does not differ much
for programs with both Integer and String versions of classes and for those
with only Integer-specialized hierarchy. Thus limiting our testing to Integer-
specialized classes does not affect the soundness of conclusions about relative
effects of different specializations on methods.

1−MSetS 2−MS 4−SMS 5−TMS 6−S 7−O

8.
5

9.
0

9.
5

10
.0

10
.5

11
.0

11
.5

Client: TreeMap Optimizations

C
P

U
 T

im
e

(s
ec

.)

Fig. 11. Results of TreeMap specializations, client mode

The program consists of several test methods, each testing a particular method
in the ArrayList class by looping over calls to that method. The methods being
tested are set, add, and get. Some of the tests are designed to test effects of
typecasting in addition to the effects on the methods. Just like with the quick-
sort, we use two kinds of parameter passing: via an interface List and directly
via ArrayList class. We also tested effects of inlining by setting the JVM flag
to -XX:-Inline.

Since the three methods studied here differ in passing parameters, handling
return values, and behavior within the ArrayList class, they give us important
insights into the effects of the optimization.

9.2 Parameter Passing via an Interface

In this section we discuss the case when the container objects (ArrayList or
TreeMap) are referred to in the client classes of a program via an interface vari-
able. We discuss performance changes caused by each of the five optimizations
for the three methods used in our sample runs: add, get, and set.

Effects on set. The set method takes an parameter of type E and an in-
dex. The method consists of a call to a private method RangeCheck and two
assignment statements to objects of type E. The call returns a value of type E,
although the return value is not used in the test.

1−C 2−LS 3−ALS 4−AL 5−S 6−O

8.
5

9.
0

9.
5

10
.0

10
.5

Server: Set−adj 30000

C
P

U
 T

im
e

(s
ec

.)

Fig. 12. Set method, server mode

The results are shown in Figures 12 and 13. In the server mode the only
optimization that shows improvement over O in the server mode is ALS, with
about 9.5% improvement. The other optimizations show different degrees of
slowdowns: a slight slowdown (less than 3%) for S, LS, and C, with LS being the
closest to O, and a larger slowdown for AL (on the order of 16%). The percent
of slowdown or speedup between any pair of optimizations remains constant for
the number of loops changing from 20000 to 30000 to 40000.

The hypothesis for explanation of the slowdown is that specialization intro-
duces additional typecasting which cannot be eliminated at running time.

In the client mode set shows a very different pattern of behavior: the only
optimization that runs faster than O is S which gives a modest speed up of about
2%. ALS is the worst-performing “optimization” resulting in 7% slowdown. AL
is close to it with a slowdown of about 6%. LS and C show identical results with
3.5% slowdown. Just like for the server case, the percent of slowdown or speedup
between any pair of optimizations remains constant for different number of loops.

1−C 2−LS 3−ALS 4−AL 5−S 6−O

12
.6

12
.8

13
.0

13
.2

13
.4

13
.6

13
.8

Client: Set−adj 30000

C
P

U
 T

im
e

(s
ec

.)

Fig. 13. Set method, client mode

Effects on get. The get() method takes an integer parameter (an index), calls
the rangeCheck method (which may generate an opportunity for inlining) and
returns an element at that index as an element of type E (the type parameter).
The test for get assigns the result returned from get to a variable of type Object,
but does not call any methods on it to avoid separate effects of typecasting or
devirtualization:

public Object testGet(RList<T> list, int numLoops) {
Random r = new Random();
Object[] objects = new Object[10 + r.nextInt(100)];
int size = objects.length;
for (int i = 0; i < numLoops; i++) {

for (int j = 0; j < 8675309; j++) {
objects[j % size]= list.get(j % 2);

}
}
return objects[r.nextInt(size)];

}

The results of get testing are shown in Figures 14 and 15. In both modes
results are nearly identical for all six optimizations (in the server mode the
differences are in the hundredths of a second for a 25-second run and in the client
mode they are in the tenths of a second in a 57-second run. Therefore returning
an element whose type is the type parameter of the class is not affected by the

type specialization if the element is not typecast to a more specific type after it
is returned.

1−C 2−LS 3−ALS 4−AL 5−S 6−O

24
.8

8
24

.8
9

24
.9

0
24

.9
1

24
.9

2
24

.9
3

24
.9

4

Server: Randomized get 100 5000

C
P

U
 T

im
e

(s
ec

.)

Fig. 14. Get method, server mode

Effects on add. add method takes a parameter of the type E and returns a
boolean. It calls EnsureCapacity and then performs one assignment statement
of a variable of type E. EnsureCapacity, if needed, allocates a new array of type
Object and uses arrayCopy to copy the objects of type E into it.

The results are shown in Figures 16 and 17. In the server mode the only spe-
cialization that causes a performance decrease is AL. The decrease is about 10%.
The other three specializations result in about 35% performance improvement.

The client mode shows a very different pattern. Firstly, we observe a very
wide spread of running times. For instance, the complete optimization C takes
anywhere between 7.5 and 11.5 seconds in our test runs. This wide spread is
observed in several different runs of the same test. This is likely to be caused
by unpredictability of memory allocation in arraycopy. It is difficult to judge
the effects of different specializations based on results with so wide ranges. No
consistent pattern of time increase or decrease due to specialization has been
observed.

1−C 2−LS 3−ALS 4−AL 5−S 6−O

57
.2

57
.4

57
.6

57
.8

Client: Randomized get 100 5000

C
P

U
 T

im
e

(s
ec

.)

Fig. 15. Get method, client mode

1−C 2−LS 3−ALS 4−AL 5−S 6−O

3.
5

4.
0

4.
5

5.
0

5.
5

Server: Add−adj 30000

C
P

U
 T

im
e

(s
ec

.)

Fig. 16. Add method, server mode

9.3 Effects on Parameter Passing via a Class

Work in progress, to be added shortly

1−C 2−LS 3−ALS 4−AL 5−S 6−O

8
9

10
11

Client: Add−adj 30000

C
P

U
 T

im
e

(s
ec

.)

Fig. 17. Add method, client mode

9.4 Static Effects.

When considering effects of specialization, we take into account two kinds of
factors: static changes to bytecode and dynamic effects of JVM optimization.
Static effects can be observed by comparing bytecode generated for the original
program and its specializations. For instance, consider the following line of code
in the method partition in the Quicksort class:

inputList.get(i).compareTo(pivot)

This fragment generates the following bytecode sequence in the original Quicksort
class:

invokeinterface #54 <research/util/List.get> count 2
checkcast #58 <java/lang/Comparable>
aload 4
invokeinterface #60 <java/lang/Comparable.compareTo> count 2

However, the same code fragment in a specialized QuicksortInteger class in
Interfacespecialization generates more efficient bytecodes:

invokeinterface #54 <research/util/ListInteger.get> count 2
aload 4
invokevirtual #58 <research/main/TestInteger.compareTo>

The checkcast operation got eliminated and the call to compareTo via invokeinterface
is replaced by invokevirtual. We observed that the typecast was eliminated in

LS and C, and a call to compareTo() was devirtualized in ALS, S, LS, and C.
However, often static factors (such as those obvious in bytecode) do not explain
all the time differences.

9.5 Dynamic Effects.

JVM warmup affects specialized programs where the same type is specialized
to two different bounds or where a non-specialized version is used alongside the
specialized one. Suppose a non-specialized type G has a method m that gets
called a sufficient number of times to trigger dynamic compilation. The number
of times the non-compiled version of m is called equals to the threshold of the
JVM. If we use two different copies of G, each of them will have its own copy
of m, and the warmup will take twice as long. Thus, in the quicksort example
specialized copies of the class have a warmup delay because methods set and get
in the ArrayList class (which perform the bulk of the work) have two copies,
one for each specialized class. However are on the order of 0.1-0.2 sec. for 10,000
method calls in server.

Interestingly, constructors contribute to warmup delays greater than regular
methods. Each constructor calls its super constructor, creating specialized copies
of classes may result in a slowdown. When creating an ArrayList the following
constructors are called: ArrayList, AbstractList, and AbstractCollection.
Complete specialization C has specialized copies of constructors for all three
classes (two specialized and one non-specialized). In LS AbstractCollection
is shared between all classes. One may notice a small slowdown of C over LS
specialization.

Another element that affects a program’s performance is the use of arraycopy
in specialized classes. Copying from an array referenced by Object[] variable to
TestInteger[] can give a substantial program slowdown. However, the delay
seems to be small in practice (below 0.3 sec) since arraycopy is called only when
a larger array needs to be allocated, and since an array size doubles every time,
with 1500 elements it is not a significant factor.

Dynamic factors that contribute positively to efficiency are dynamic devir-
tualization and inlining. However, passing parameters to a specialized class via
a non-specialized interface leads to extra run-time typechecks causing overhead
of concrete class specializations over interface ones.

10 Conclusions and Future Work

We observed that interface specializations (e.g. LS in the quicksort examples)
performs very well in a variety of settings in client and server modes. Opti-
mizations that specialize just the class itself but not the interface or the client
code but not the classes are not good options and may occasionally cause a
slowdown. Finally, complete specializations perform at about the same level as
interface ones but have a much larger code duplication since all classes that refer-
ence the interface need to be modified. Thus we consider interface specialization
a promising option and plan to further investigate its behavior.

Extending the algorithm to handle wildcards that use specialized types as
bounds should not be difficult. These types should just be added in the propaga-
tion phase of the algorithm. This approach, however, still needs to be tested. Our
future work also includes extending our algorithm to cover parameterized meth-
ods, multiple type parameters of classes, and other language features. Our goal
is to implement the specialization algorithm and to apply it to larger programs,
including standard benchmarks.

References

1. Eric Allen, Robert Cartwright: The case for run-time types in generic Java. Prin-
ciples and Practices of Programming in Java (PPPJ), 2002, Intermediate Repre-
sentation Engineering for Virtual Machines (IRE), 2002.

2. Bowen Alpern, Anthony Cocchi, Stephen J. Fink, David Grove and Derek Lieber:
Efficient Implementation of Java Interfaces: Invokeinterface Considered Harmless.
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications (OOPSLA), 2001.

3. Ole Agesen, Stephen N. Freund, John C. Mitchell: Adding type parameterization to
the Java language. ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA), 1997.

4. Gilad Bracha: Generics in the Java Programming Language. Sun Microsystems,
java.sun.com, 2004.

5. Francesco Bellotti, Riccardo Berta, Alessandro De Gloria: Evaluation and opti-
mization of method calls in Java. Softw. Pract. Exper., 34 (2004), 395–431.

6. Joseph A. Bank, Andrew C. Myers, Barbara Liskov: Parameterized types for Java.
SIGPLAN-SIGACT symposium on Principles of programming languages (POPL),
1997.

7. Gilad Bracha, Martin Odersky, David Stoutamire, Philip Wadler: Making the fu-
ture safe for the past: adding genericity to the Java programming language. ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications (OOPSLA), 1998

8. Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein: Introduction to
Algorithms. MIT Press, 2001.

9. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design patterns:
elements of reusable object-oriented software. Addison-Wesley, 1995.

10. James Gosling, Bill Joy, Guy Steele, Gilad Bracha: The Java Language Specifica-
tion (3rd Edition). Prentice Hall, 2005.

11. Brian Goetz: Java theory and practice: Dynamic compilation and performance
measurement. Java technology series at www.ibm.com, 2004.

12. Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, Toshio
Nakatani: A study of devirtualization techniques for a Java Just-In-Time compiler.
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, 2000.

13. Andrew Kennedy, Don Syme: Design and implementation of generics for the .NET
Common language runtime. ACM SIGPLAN conference on Programming language
design and implementation, 2001.

14. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. http://www.R-project.org, 2006.

15. Jose H. Solorzano, Suad Alagić: Parametric polymorphism for Java: a reflective
solution. ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (OOPSLA), 1998.

16. James Sasitorn, Robert Cartwright: Efficient first-class generics on stock Java vir-
tual machines. Symposium on Applied Computing (SAC), 2006.

17. Ulrik P. Schultz, Julia L. Lawall, Charles Consel: Automatic program specialization
for Java. ACM Trans. Program. Lang. Syst., 25 (2003) 452–499.

18. Mirko Viroli, Antonio Natali: Parametric polymorphism in Java: an approach to
translation based on reflective features. ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications (OOPSLA), 2000.

