On the Algorithm for Specializing Java Programs
with Generic Types

Daniel Selifonov, Nathan Dahlberg, Elena Machkasova
Computer Science Discipline
University of Minnesota Morris
Morris MN, 56267
selif004,dahlb061,elenam @umn.edu

Abstract

Java 5.0 added classes with a type parameter, also known as generic types, to better support
generic programming. Generic types in Java allow programmers to write code that works
for different types, with the type safety checks performed at compilation time.

Generic classes in Java function by type erasure. Type erasure works by creating a single
instance of the generic class, removing all type-specific information from the generic class,
and inserting typecasts to guarantee type-safe calls to instances of the generic class.

The selection of the type erasure strategy when implementing the Java generics functional-
ity meant that very few changes were necessary to the Java virtual machine. However, type
erasure precludes dynamic optimizations that would have been possible if type information
was preserved until run-time. Since most of the optimizations in the Java programming
language are performed at run-time, Java programs using generic classes are slower than
those that use type specialized classes.

In this paper we propose and discuss an optimization of Java programs that we call special-
ization of of Java generic types. The specialization selectively produces separate copies
of generic classes for each type used in the program. This reduces the number of time
consuming typecasts and dynamic method lookups. The optimization produces up to 15%
decrease in program’s run time. We discuss conditions under which the specialization can
be performed without changing programs’ behavior.

We present an algorithm that allows one to get substantial program’s speedup with rela-
tively few changes to the program. Using a quicksort sorting procedure as a benchmark,
we compare the result of such specialization, which we call minimal, with the orginal
non-optimized program and with the version of the program where all generic classes are
specialized.

1 Introduction

Generic, or parameterized, types were added to the Java programming language in version
5 (also known as 1.5). Generic types, or generics for short, allow a programmer to write
classes and functions that work with objects of different types without specifying the actual
type, instead denoting the type by a type variable. Some proposals on adding generics to
Java include [1, 3].

Generic style of programming was possible in Java before generic types. However, the
addition of generics made it more convenient for programmers to write generic code. Even
more importantly, it shifted the error-detection in such code from run time to compilation
time, allowing earlier and easier error detection and providing type safety guarantees (i.e
the absence of certain run-time errors) for programs that successfully compiled.

Generic types in Java are implemented using an approach called type erasure. In this ap-
proach a compiler checks the type correctness of all uses of generic codes. After the type
usage is found to be correct, the compiler discards type-specific information and generates
one copy of the code based on the most general type compatible with the generic class or
function.

The type erasure approach does not duplicate code unnecessarily because only one copy of
the code is created. However, this approach creates slower program because type-specific
information that could have been used for type-specific run-time program optimization is
discarded at compilation time.

In this paper we present an optimization that we call specialization of Java generic types.
We developed the idea of the optimization in 2006. Our earlier work on the specialization
is described in [2, 4].

We use a QuickSort implementation that uses Java collections as our benchmark. We per-
form two kinds of optimization for this example: the minimal optimization that specializes
only the classes where we are likely to obtain a noticeable performance increase because
of specialization, and a complete optimization that specializes all possible classes. We
describe the algorithm for the minimal specialization.

We compare the running times of the two versions of the program (specialized with the
minimal specialization and with the complete one) to each other and to the original pro-
gram. We observe that the complete optimization results in up to 25% program speedup
and the minimal optimization gives up to 28% speedup of the relevant program fragment.
Thus the minimal optimization produces substantial efficiency increase with much less
code duplication.

2 Overview of Java Type System

There are two kinds of types in Java, primitive types (such as integers and booleans) and
object types (such as strings and arrays). Classes are a kind of object type. Every object in
Java belongs to a class. Classes describe types of objects by specifying types and names of
their internal data (also known as fields) and their functionality defined by methods.

2.1 Java Class Hierarchy

Like most object-oriented languages, Java supports inheritance between object types. This
means that a class in Java can be declared to inherit from another class in which case it can
use all methods of that class without redeclaring them. For example, if class A contains a
method m and class B inherits from class A (or, following the Java syntax, B extends A),
then m can be called on an object of class B because of inheritance.

All objects implemented in Java are part of the Java class hierarchy. If a class is not declared
to inherit from any class, it implicitly inherits from a class called Object which is at the top
of the class hierarchy.

Each class in Java can only inherit directly from a single other class, but can inherit from
many more indirectly. For example, if class A inherits from class B and class B inherits
from class C, then class A directly inherits from class B and indirectly, through class B,
inherits from class C. This means that all classes inherit from the Object class, since it is at
the top of the class hierarchy. If a class A inherits from a class B (directly or indirectly),
then we say that A is a subclass of B and B is a superclass of A.

A subclass, such as class A in the previous example, may contain its own implementation
of a method defined in a superclass, such as class B. In this case we say that a method
in A overwrites or overrides the corresponding method in B. This happens when the two
methods (one in A and one in B) have the same name and argument types. Any call of the
method on an object of a class A will then call the method defined in A, while any call to
the corresponding method on an object of the class B will still call the method defined in
B.

If a class inherits a method but does not implement it, then any calls to that method will
invoke the method in the closest (via the inheritance chain) superclass that does implement
it. For instance if class B contains a method m and class A is a subclass of B that does not
define a new method m, any calls to m on class A will call the method m in class B. If B
inherits from C that also defines m, the method of B will still be called for an object of the
class A since B is closer to A in the inheritance chain. The process of determining the right
method to call is performed at run-time and is called dynamic method lookup.

2.2 Interfaces

The Java type hierarchy includes interfaces in addition to classes. An interface is similar
to a class except it only declares but does not implement any methods. It lists method de-
scriptors (names, return values, and the types of parameters) without any implementations,
such as in the following example:

interface List {

void clear();

int size();

All classes that implement an interface must implement all of the methods in the interface.
This means that any class that implements List will have to implement clear () and
size (). Implementing these classes also require that the implemented methods have the
same parameters and return types.

Classes are allowed to implement more than one interface, in which case they must imple-
ment all methods in all the interfaces. A class that implements an interface is referred to as
a subtype (or sometimes as a subclass) of that interface.

3 Java Compilation Model

Traditionally many programming languages are compiled into a set of platform-specific
CPU instructions. The majority of Java compilers follow a different model: they convert
programs into platform-independent sets of instructions called bytecode which are then run
by a Java interpreter referred to as the Java virtual machine or JVM. This part of the Java
compilation process is called static compilation. It allows Java to compile independently
from the platform it is running on which allows for runtime safety and platform indepen-
dence.

Originally JVMs interpreted the bytecode, but since this was slow, JIT (just-in-time) com-
pilers were added to JVM to compile the bytecode to native code as it is run. Since JIT
compilers add a lot of overhead to programs because they have to compile and optimize
code at runtime, Sun Microsystems developed HotSpot™JVM which decreases this over-
head by profiling the program being run to selectively compile only frequently called meth-
ods into native code. This means that time is not spent performing expensive compilation
and optimization of code that will not affect the runtime of the program. This compilation
of bytecode to native code at run time is called dynamic compilation.

There are two ways of running the HotSpot JVM: client and server mode. The client mode
compiles a program using a simple and fast JIT compiler. It starts the program as quickly
as possible without heavy optimizations. In the server mode the dynamic compilation
takes longer and focuses more on optimizing the runtime of the program, performing more
effective but time-consuming optimizations. As the result, long programs often (though not
always) run faster in the server mode because of the optimizations performed by the JVM.

4 Overview of Generic Types

Many modern programming languages, including Java, are strongly typed: they require that
types of all variables are explicitly declared by the programmer. The type compatibility is
checked by the compiler. Many of such languages have a feature called generic types.
They allow a programmer to write code for a data structure or function that works with
different data types. The type used in these data structures or functions is specified as a
type parameter. This type parameter is represented by a type variable. For example, a
linked list would be declared like this as a generic class:

LinkedList<K>

Here K is the type variable that represents the type parameter.
When using a generic data structure or function, the programmer specifies a concrete type
for the type parameter. In this case, replacing K with a concrete type:

LinkedList<Integer>

This declaration would create a LinkedList of Integers and is called type instan-
tiation. LinkedList could then be instantiated in the same program using a different
concrete type, such as a String. The LinkedList of strings would then only contain
strings, and the LinkedList of integers would only contain integers.

The use of generics makes code more reusable and eliminates unnecessary code repetition,
such as writing separate implementations of a list for integers and strings. Unlike other
ways of writing generic code (i.e. code that works for different types), generic types also
provide type safety guarantees, as described in section 4.4.

Generic types in Java where added in Java release 1.5 (Java 5). They were implemented
using an approach called type erasure (see section 4.3 for details). One of the reasons for
choosing this implementation is so that older Java code would still be usable with Java 5.

4.1 Use of Generic Classes in Java

In a parameterized class, the type parameter is put in angle brackets in the class declaration.
Within the scope of the class the parameter given in the angle brackets may be used just as
any type would be used. For instance, it can be used as a method parameter or as a return
type.

The methods in the class refer to the type parameter as they would to any concrete type. As
an example, consider the following class declaration:

public class LinkedList<K> {
public K get() {...}
public void add (K newItem) {...)

}

Here K is the type parameter passed to this class upon instantiation. K is then used as a
return type for the method get and as a parameter for add. This means that get returns
an object of a type K and add takes such an object as a parameter.

An upper bound (or simply a bound) of a generic type can be used when writing parame-
terized code to restrict the range of types allowed to substitute for the type parameter. A
class or an interface can be set as an upper bound so that only subtypes of that bound can be
passed as a type parameter. The keyword extends is used to set a bound. For instance:

public class LinkedList<K extends Number> {...}

Any class that implements the interface Number will be a possible type parameter for
LinkedList.

When an instance of such a class is created, a concrete value that is a subtype of the upper
bound of must be specified as the type parameter. For example, the following is a valid
instantiation of the LinkedList class:

LinkedList<Integer> testList = new LinkedList<Integer>();

The compiler checks to make sure that the concrete type, Integer in this case, is a sub-
type of the upper bound of the type parameter, in this case Number. The code will fail to
compile if this is not the case.

The compiler guarantees that a class passed as a type parameter is a subtype of the class
or an interface specified as a bound. Thus any method defined for the bound class or an
interface is defined for any class passed as parameter in any instance of the generic type.
Therefore bounds are used when a generic class requires that a specific method is called on
objects of the class represented by the type parameter.

For example, if a method intValue () is called in a generic class on the objects of the
parameter type K then the programmer specifies the upper bound Number since Number
has the intValue () method, hence all of its subclasses have that method as well.

A parameterized class with no upper bound specified is in fact a class with an upper bound
Object.

4.2 Type Recursion: Comparable<T>

Java allows a programmer to use a type parameter recursively within declarations of generic
types. A common example of this is the use of the generic interface Comparable<T>.
The interface requires any class that implements it to provide a method

int compareTo (T obj)

If a class A implements the interface, the compareTo method is used to compare two
objects of the class A to each other according to some order. If a and b are two objects of
the class A then a. compareTo (b) returns a negative number if a is less than b according
to that order, a positive number if b is less then b, and zero if the two objects are equal.
Classes String and Integer both implement the interface. Integers are compared by
their value and strings are compared lexicographically.

It makes sense to compare objects of a given class only to objects of the same class or
its subclasses. For instance, strings cannot be compared to integers. However, before
generic types in Java the only way to ensure that objects were properly compared was to
include a typecasting operation that would give a run-time error if the object passed to
the method was of the wrong type. Adding a type parameter to Comparable interface
allows this check to be performed at compilation time which leads to earlier and reliable
error-detection.

The Java 5 version of the interface leads to a recursive style of declaring generic classes for
comparable objects. The following is a declaration of a generic priority queue class:

PriorityQueue<T extends Comparable<T>>

Objects are retrieved from the queue according to the order defined by compareTo method.
Note that the type parameter T is used recursively in the type declaration T extends
Comparable<T>. The first occurrence of T names the parameter, and the second oc-
currence (the one in Comparable<T>) refers to the same T. Thus, the type declaration
means that objects of type T are comparable to other objects of type T.

4.3 Implementation of Generic Types

There are two basic ways to implement generics in modern programming languages. The
first one is a template approach used by C++. The second approach is called type erasure,
and is used by Java.

The template approach creates a separate copy of the data structure or function for each
instantiation of the data structure or function that uses a different data type. This means
that there will be several copies, one for each type used in the program, of the data structure
or function in system memory while the program runs.

Type erasure, on the other hand, makes only one copy of the code. This copy is not specific
to any type instance. Type erasure occurs during static compilation. When the program
compiles, the compiler checks the type compatibility and after that it removes all instance-
specific type information and replaces it with the type bound. If there is no upper bound
specified, the upper bound is Object. Since specific type information is removed, type
casts are inserted by the compiler for objects returned from generic methods and for some
other instance-specific uses of the type. For example:

public class LinkedList<K> {
public K get () {...}
public void add (K newlItem) {...}

}

The static compilation would generate bytecode for this program as if the the program was
written like this:

public class LinkedList {
public Object get () {...}
public void add (Object newlItem) {...}

}

All calls to LinkedList would then be typecast. For example, suppose a programmer
writes the following code:

public void static main (String args[]) {
LinkedList<Integer> newlist = new LinkedList<Integer>();
Integer n = newlList.get();

}

This would be compiled to the bytecode equivalent to:

public void static main (String args[]) {
LinkedList newList = new LinkedList ();
Integer n = (Integer) newList.get ();

}

The object returned from get is cast to the instance type, in this case an Integer, by the
automatically inserted cast.

Templates allow for shorter runtimes because type-specific information allows the compiler
to generate more efficient code and to perform type-specific program optimizations. They
are somewhat less memory efficient and less convenient for programmers because of creat-
ing multiple copies of the code. On the other hand, type erasure is more memory efficient
but tends to produce longer runtimes. This is because erasing type information at compile
time does not allow further type specific program optimizations.

4.4 Compile Time Type Checking for Generics

In versions of Java before generic types a programmer also could write a “generic” collec-
tion (say, a list). However, such a collection had to be written to contain elements of type
Object (or another most general type of the “generic” collection). Since any type is a
subtype of Ob ject, an instance of such a list could be used for any type.

However, one could not be sure that all objects in a generic collection were of the same
type. This meant that whenever an element was removed from a collection, it had to be
explicitly cast into its real type. For instance, if a list was used for strings, the programmer
had to insert code to typecast objects removed from the list to the type St ring. There was
no possibility to check the correctness of typecasting at compilation time, thus the only
possible indication of an incorrect type use was a run-time ClassCastException.
With the introduction of generics, collections have a declared type that can be checked at
compile time. Since this happens at compile time instead of runtime, the type casts are
guaranteed to be safe. This feature is an important element of type safety of Java generics.

5 Specialization of Generic Types

We describe the proposed optimization and discuss reasons for its efficiency.

7

5.1 Description of the Optimization

When the Java compiler performs type erasure on parameterized classes, it replaces in-
stances of the type parameter with the bound. Typically the bound is less specific than
the actual instance type because of the generic nature of the parameterized classes. Since
the bound is less specific than the type of a particular instance, the Java Virtual Machine
must perform computationally expensive method lookup when calling methods on objects
represented by the type parameter.

5.2 Specialization of Generic Type Bounds

To mitigate the performance inefficiency of generic types, it is possible to specialize the
generic classes. The specialization approach used for this optimization produces duplicates
of the generic class, and changes the parameterized variables to a specific concrete class.

For example, the given LinkedList example can be specialized from the generic ver-
sion:

public class LinkedList<K> {
public K get () {...}
public void add (K newlItem) {...}

}
To an Integer specialized version:

public class LinkedListInteger<K extends Integer> {
public K get() {...}
public void add (K newItem) {...}

}
Which is type erased to the Integer bound during static compilation to produce:

public class LinkedListInteger {
public Integer get () {...}

public void add (Integer newlItem) {...}

5.3 Effects of Type Specialization

There are two sources of increased program efficiency due to specialization of type bounds:
elimination of typecasts and elimination of runtime overhead of dynamic method lookup.
Dynamic lookup is a necessary component of method invocation in an object-oriented lan-
guage. It is possible that multiple versions of a method could exist in superclasses and in
subclasses. During the dynamic method lookup the correct version of the method is found
for the specific object instance on which the method is invoked. With the specific type
information lost as part of typical type erasure, the dynamic lookup cost is comparatively
high.

However, it is possible to reduce the dynamic lookup cost by specializing the bound of a
parameterized class to be the same as the types used in the instances of the class. As the
result, the type erased version of the parameterized class would not discard specific type
information, there would be no need to include additional type casts, and method lookup
becomes much less computationally expensive. The cut-down of the method lookup time
in cases when the method address can be determined exactly is called devirtualization.
By duplicating the class and specializing the bound we provide enough information to the
dynamic compiler to devirtualize method calls.

Since a parameterized class can be instantiated with multiple type parameters, it is nec-
essary to produce multiple copies of the parameterized class, specialized with each of the
individual instance type bounds used in the program.

6 Conditions for Behavior Preservation

Program optimization must be performed only in cases when they do not alter behavior
of a program. There are some cases when bound specialization cannot be performed, at
least not automatically, as it would have a potential for changing the program’s behavior.
In these cases it may be left up to the programmer to decide whether they would consider
the specialization to be safe.

Since this method of specialization produces specialized duplicates of classes with different
names, the specialization cannot be performed on any class that relies on the class name.
Thus, a class used in Java reflection or a class that may be dynamically reloaded cannot be
specialized.

Specialization cannot be performed if a class has typecasting of an object to the type vari-
able: since the type variable gets replaced by the type bound during the type erasure, tight-
ening the bound may change a successful typecasting to a run-time error.

Serialization refers to writing out object’s internal data to a file for later retrieval. A class
whose objects can be serialized must be implement Serializable interface. Serializa-
tion of objects may present a problem similar to that of dynamic loading or reflection: since
a serialized object contains the class signature, changing the class name via the optimization
will make the object incompatible with the non-optimized version of the class. However,
if the object is read back by a program that is optimized the same way, there should be no
issues with serialization. The optimization must choose a new serialVersionUID for
an optimized class to avoid confusion with the non-optimized class. One should also note

that serialization creates an overhead of its own. If performance of a program is an issue,
alternatives to serialization (such as directly writing data to a file) should be considered.

7 Algorithm

7.1 Quicksort

To demonstrate the effectiveness of our specialization algorithm, we selected a benchmark
example that was heavy on dynamic lookup: a generic quicksort implementation. Many
algorithms require sorting, thus many programs use sorting in the context of the algorithms
that they implement. Quicksort is one of them most commonly used sorting algorithms,
therefore our example is an element of many real-life programs.

Quicksort is among the fastest general purpose comparison sorts. The average case time
complexity for sorting a list of n elements is ©(n xlg(n)) comparisons. The Java program-
ming language Comparable interface is used to determine natural ordering of objects of
mutually comparable types, as described in Section 4.2.

With the Comparable interface in mind, it makes sense to produce a Quicksort class that
can operate on any type whose elements can be compared to each other. To that end, the
following class was produced:

public class Quicksort<T extends Comparable<T>> ({
void sort (List<T> 1in) {
quickSort (in, 0, in.size() - 1);
}
void quickSort (List<T> in, int frst, int last) {
if (frst < last) {
int mid = partition(in, frst, last);
quickSort (in, frst, mid - 1);
quickSort (in, mid + 1, last);

}

int partition(List<T> in, int frst, int last) {
T piv = in.get (last);
int sbp = frst - 1;

for (int 1 = frst; 1 < last; i++) {
if (in.get (i) .compareTo (piv) <= 0) {
sbp++;

T tmp = in.get (sbp);
in.set (sbp, in.get (i));
in.set (i, tmp);

}

T tmp = in.get (sbp + 1);
in.set (sbp + 1, in.get (last));
in.set (last, tmp);

10

return sbp+l;

}

This Quicksort class accepts a list of any self-comparable objects and uses a method
invocation to compareTo in order to determine natural ordering. Due to type erasure, all of
the compareTo invocations are on the type Comparable, thus requiring a computationally
expensive dynamic lookup to find the correct method code.

For testing purposes, the Quicksort class is utilized by a runtime measurement class
called MeasureRuntimes. MeasureRunt imes sorts twelve Lists (six of Integers,
and six of Strings) using the Quicksort class, and reports the fragment sort time. The
differences in the fragment sort time are reported in results (see Section 7.4) and were used
to guage the effectiveness of the optimization through specialization.

The MeasureRuntimes class utilizes the List and ArrayList types for storing the
comparable elements. List and ArrayList are two component types of the Java Col-
lections library. Collections contains many types of data structure implementations, and is
commonly used in many Java programs. As part of this specialization research, we traced
the classes related to Java Collections connected to the use of List and ArrayList in
the Quicksort example.

Eight types were traced in connection to use of Collections in the Quicksort example.
Interfaces:

e Iterable

Collection (extends Iterable)

List (extends Collection)

Iterator

Listlterator (extends Iterator)

Classes:
e AbstractCollection (implements Collection)
e AbstractList (extends AbstractCollection, implements List)
e ArrayList (extends AbstractList, implements List)

These types were specialized in the complete optimization to all non-recusive type in-
stances.

11

7.2 Definitions
In this section we define notations necessary for specifying the algorithm.

e Static Data - A Java class can contain static data. Static data belongs to the class,
and is shared by all instances of a class. For example, a class can keep track of the
number of instances by utilizing a static counter that is incremented whenever an
object of the type is constructed.

e Type-Erased Operations - A type erased operation is an operation that is made generic
before static compliation. For example, a method that intentionally takes a type-
erased parameter (such as Object) instead of a generic type parameter; a common
example is the equal method, which takes an Object.

e Nested (Type) Instance - A nested type instance can occur when a generic param-
eterized class has a sufficiently wide bound that allows the parameterized class to
be instantiated with itself as a type parameter. For example, a List of Lists of
Integerscan be typed as List<List<Integer>>.

7.3 Algorithm Description

The algorithm is a whole program optimization that starts from the program’s entry point
main function. Whole program optimizations are optimizations that need to analyse the
entire program before optimizing.

7.3.1 Algorithm for Minimal Optimization

A straightforward implementation of bound specialization would specialize all generic
classes that are used with a particular concrete type. For instance, in the case of the quick-
sort program all generic classes instantiated with the class Integer, suchas Quicksort,
ArrayList, , and all of the classes in the collections subset described in Section 7.1
would be specialized. However, since the most substantial optimization benefit comes from
devirtualization, it makes sense to optimize starting from the class that performs method
calls on the objects whose type is represented by the type parameter.

It turns out that in many cases it is sufficient to optimize only such classes in order to obtain
substantial benefits in the server mode of HotSpot JVM (see results in section 7.4). While
it may be needed in some cases to optimize programs that run in the client mode, generally
longer programs are expected to run in the server mode to take full advantage of dynamic
optimization.

An optimization that specializes only classes that directly use objects that belong to the
classes represented by the type parameter and leaves the rest of the generic hierarchy un-
specialized is called minimal optimization. Below we present the algorithm for minimal
specialization. The algorithm also checks the conditions for the minimal specialization to
preserve the program’s behavior.

1. Make a list of all non-nested instances of parameterized classes, based on the calls to
constructors.

12

2. For each class on the list, make a list of methods called on the type parameter.

3. For each pair on the list, check if the method is overridden from the method in the
type bound. Remove items that do not have any overridden methods.

4. Check for classes on the list for static data, or “type-erased” operations. Remove
those.

5. For each class C on the list with a parameter T:

e Find all parameterized classes whose parameters are within the scope of T.

e [f all classes generated by the previous step have non-nested bounds, specialize
C.

7.4 Results

Type Time Percentage
Complete | 23.96 sec | 5.48% faster
Minimal | 24.04 sec | 5.17% faster
Original | 25.35 sec -

Table 1: Client Times

Type Time Percentage
Complete | 11.14 sec | 25.18% faster
Minimal | 10.73 sec | 27.94% faster
Original | 14.89 sec -

Table 2: Server Times

Results were obtained by running the three different versions of the program five times
and recording the fragment time for the sorting operation. In both optimized versions, the
Quicksort class is the location in which the devirtualization provided the most profound in-
crease in program execution speed. We measured the sorting fragment time in this specific
instance; in our experience, the total program execution time tends to be very close to the
fragment time.

8 Conclusions and Future Work

We observe that for the QuickSort test example specialization of generic types leads to a
substantial efficiency increase: up to 5.5% in the client mode of the JVM and up to 28%
in the server mode for the relevant fragment of the program. The minimal specialization
produces results comparable, and for the server JVM, even better than the complete spe-
cialization.

13

CPU Time (sec.)

15

14

13

12

11

——
o
I
T T T
Complete Minimal Original

Sun JVM 1.5.0.04 Server - 1500 Elements

Figure 1: Server Fragment Time Results

14

CPU Time (sec.)

25.0

24.5

24.0

o
=
o
T T T
Complete Minimal Original

Sun JVM 1.5.0.04 Client —= 1500 Elements

Figure 2: Client Fragment Time Results

15

Since the minimal specialization copied only one class (namely, QuickSort), the results
show that it is sufficient to duplicate a small portion of a program to obtain full benefits
of specialization. This makes specialization of type bounds of generic types a promising
candidate for Java optimization.

Our future work is to further develop the algorithm for specialization and to study possi-
bilities and effects of various partial specializations of generics. Our ultimate goal is to
develop a tool for automatically specializing generic types.

References

[1]

(2]

(3]

[4]

ALLEN, E., AND CARTWRIGHT, R. The case for run-time types in generic java.
In PPPJ "02/IRE "02: Proceedings of the inaugural conference on the Principles and
Practice of programming, 2002 and Proceedings of the second workshop on Intermedi-
ate representation engineering for virtual machines, 2002 (Maynooth, County Kildare,
Ireland, Ireland, 2002), National University of Ireland, pp. 19-24.

BEVIER, S., AND MACHKASOVA, E. Specialization of java generic types. UMM
Working Papers Series 2, 1 (June 2006).

BRACHA, G., ODERSKY, M., STOUTAMIRE, D., AND WADLER, P. Making the fu-
ture safe for the past: adding genericity to the java programming language. In OOPSLA
"98: Proceedings of the 13th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications (New York, NY, USA, 1998), ACM Press,
pp- 183-200.

LEMBCKE, S., BEVIER, S., AND MACHKASOVA, E. Specialization of java generic
types. Midwest Instruction and Computing Symposium (April 2006).

16

