
Effects of generic types specialization on program
behavior

Jeremy Bleichner, Nolan Nordlund, Elena Machkasova
Computer Science Discipline

University of Minnesota Morris
Morris MN, 56267

blei0015, nordl056, elenam@morris.umn.edu

Abstract
Generic types are a language feature of Java that allows writing program code that is pa-
rameterized over types. The Java implementation of generic types uses a mechanism called
type erasure. Type erasure creates a single instance of a generic class, removing all type-
specific usage information (e.g. whether it is used with strings or integers). The compiler
inserts typecasts to guarantee type-safe calls to instances of the generic class. Since most of
the optimizations in the Java programming language are performed at run-time, Java pro-
grams using generic classes are slower than they would have been under an implementation
that uses type specialized classes.
Our research centers around specialization of generic types – a technique that we developed
for optimizing Java programs. The key idea of the optimization is to replace generic classes
with copies that are modified to use the actual type parameters that appear in a program.
For instance, if a program uses a generic stack of strings, a copy of the stack class that is
specialized for strings is created. We have observed program speed-ups of up to 20% due
to type specialization.
In this paper we present the overview of the specialization, focus on the challenging issue
of its dynamic effects, and present detailed results of the six versions of the code (the
original one and five different variations of specialization) for three methods of a generic
ArrayList – a class in the Java collections library.

1 Introduction and background

1.1 Java Compilation Model
Many programming languages are compiled into a set of platform-specific CPU instruc-
tions, but Java is unique in that its compiler converts a program into platform-independent
sets of instructions called bytecode. A Java interpreter, known as the Java virtual machine



or JVM, then runs the bytecode. This part of the Java compilation process is called static
compilation. Platform-independent bytecode guarantees the same behavior of a Java pro-
gram across different platforms and runtime safety.
The drawback of this system is that interpreting the bytecode is generally slower than a
compiled approach. To improve the runtime, just-in-time or JIT compilers can be included
in the JVM. At runtime, JIT compilers will compile and optimize parts of the bytecode to
native machine code to achieve greater performance than static compilation on its own; this
is known as a dynamic compilation.
A particular JVM which we focus on is the HotSpotTMJVM by Sun Microsystems. The
HotSpot JVM reduces the overhead introduced by JIT compilers by profiling the program
being run to selectively compile only frequently called methods. This approach avoids
slowdowns due to dynamic compilation for code fragments that are not frequently used.
The HotSpot JVM can run in client or server mode. Client mode focuses on loading pro-
grams faster and uses a simple JIT compiler that will not make heavy optimizations to the
code. Server mode is slower loading but optimizes the code more effectively. The perfor-
mance increases in the server mode can be noticeable in longer running programs although
this is not always the case.

1.1.1 Overview of Java Bytecode

A Java bytecode instruction consists of an operation code (also known as opcode) followed
by zero or more operands. Operands often refer to elements of a class’ run-time constant
pool. A constant pool contains constants and references to objects and method used in a
given class. Constant pool elements are represented in bytecode instructions by a # fol-
lowed by a number, such as #24. See [4] for more details.
The following bytecode opcodes are important for the further discussion:

• invokevirtual denotes a method call that gets resolved dynamically (i.e. at run
time). Since methods of a superclass can be overwritten in a subclass, a dynamic (or
virtual) method lookup is performed to determine the right method to call.

• checkcast - dynamic typecast, e.g. (String) obj. If successful, returns an
object that can be referenced via the new type. For instance, if obj is indeed a
String then (String) obj can be referenced via a String variable. If the
cast fails at runtime, a ClassCastException is thrown.

For some program examples in this paper we show the corresponding bytecode. We use
jclasslib bytecode viewer [2] to view bytecode. While bytecode generated for a program
varies between different compilers (e.g. javac and eclipse compiler), the elements essen-
tial for our research, such as method calls and typecast operations, are the same for all the
compilers that we have tried.

1.2 Generics in Java
Java, like many other programming languages, is strongly typed. This means that it

requires all variables to have explicitly declared types. One feature that many of these

2



languages share is called generic types or generics. Java generics, added in Java 1.5, allow
containers such as an ArrayList to have type parameters. A type parameter forces a
container to only hold objects of that type. This allows for code such as:

ArrayList<Shape> arr = new ArrayList<Shape>();
arr.add(new Shape(...));
for(int i = 0; i<arr.length; i++) {

...
temp = arr.get(i).shapeMethod();
... } // end for loop

where shapeMethod is any method that can be used by the Shape class. Note that the
Generics allows a method usable only by a Shape object to be called on a member of arr.
Also, an attempt to add a non-Shape object to arr would result in a compilation error.
When a generic class, such as ArrayList, is declared, it is possible to restrict the range
of acceptable type parameters. Such a restriction is called an upper bound or bound of the
generic class. For instance, a priority queue may be restricted to take only Comparable
objects:

public class PriorityQueue<T extends Comparable> {...}

If a class that does not implement Comparable interface is used as an instance of the
type parameter, the program would not compile1 Any class or an interface may serve as a
bound. If no bound is specified, it is assumed to be Object.
It should be noted that type parameters in Java generics cannot be primitive types, such
as int. It is possible to write Java code that looks as if integers are directly added to an
ArrayList, for instance:

ArrayList<Integer> arr = new ArrayList<Integer>();
arr.add(1);
int n = arr.get(0);

However, what is actually added to ArrayList is an object of a class Integer, a so-
called wrapper class for a primitive type int. Integer contains the int value as an
instance variable. The process of converting from an int to Integer performed by
add in the example above involves a constructor invocation and is called boxing. The
reverse process is performed at the call to get and is called unboxing. In our examples we
explicitly use Integer instead of int to avoid overhead of boxing and unboxing and to
make object creation explicit.
Generics in Java are implemented using an approach called type erasure. This approach
creates only one copy of a generic type: the one in which the type parameter is replaced
by the bound of the type. For instance, even if a program uses ArrayList<Integer>
and ArrayList<String>, only one copy of ArrayList actually exists, and that is
an array list of Object. The compiler inserts necessary typecasts (for instance, the get

1Strictly speaking, the bound should be declared as T extends Comparable<T> to guarantee that
the elements of the priority queue are comparable to each other and not to any other objects, but we will omit
these details for now.

3



method of ArrayList returns an Object so its result is cast to the actual parameter
type, such as Integer or String). This is done to ensure that all Java code is backwards
compatible with older Java code and applications.

1.3 Overview of Specialization of Generics
1.3.1 General Idea of Specialization

We propose and study an optimization of Java programs that we call specialization of
generic types. The optimization creates a copy of a generic type with the type bound
replaced by a more specific type based on the actual type parameter. For instance, if a
program uses ArrayList<Integer>, a separate type ArrayListInteger is cre-
ated. The bound of the original ArrayList is Object, the bound of the newly created
ArrayListInteger is Integer. The rest of the code of ArrayListInteger is
exactly the same as in ArrayList, except for a few changes explained in section 2.
References to ArrayList in the original program are then replaced by references to
ArrayListInteger. If a program additionally uses ArrayList with a different ac-
tual type parameter, e.g. ArrayList<String>, then a separate type ArrayListString
with the bound String will be created. The specialization may also be applied to inter-
faces and parameterized static methods. The optimization is performed at the Java source
code level.
The type specialization improves program performance in two major ways: it leads to
elimination of unnecessary type casts and provides opportunities for the JVM to better
optimize the code, utilizing more precise type information.
Typecast elimination occurs, for example, when an object is retrieved from a generic data
collection, such as ArrayList. Consider the following simple code fragment. In our
examples we are using Integer instead of int for the element added to the array and for
the type of variable n because implicit boxing/unboxing of integers would add unnecessary
complexity to our code.

ArrayList<Integer> arr = new ArrayList<Integer>();
arr.add(new Integer(5));
Integer n = arr.get(0);

The assignment on the last line requires a typecasting to Integer since the get method
of ArrayList returns an Object. The bytecode instructions generated by this fragment
confirm this (see section 1.1.1 for details on Java bytecode):

invokevirtual #36 <research/util/ArrayList.get>
checkcast #27 <java/lang/Integer>
astore_1

Only the bytecode for the last line of the Java code is shown. The checkcast operation
is needed before the assignment can take place (the astore 1 instruction performs the
assignment).
If the ArrayList is replaced by its specialized version ArrayListInteger, the
checkcast is no longer needed. Below is the Java code and the bytecode fragment
for the last line (the call to get and the assignment statement):

4



ArrayListInteger<Integer> arr = new ArrayListInteger<Integer>();
arr.add(new Integer(5));
Integer n = arr.get(0);

invokevirtual #52 <research/util/ArrayListInteger.get>
astore_1

Differences in constant pool numberings between the two examples are not important.
The bytecode instruction invokevirtual performs dynamic method lookup (also re-
ferred to as virtual method lookup). For instance, if a method equals is called on an
object, the run-time system has to determine the correct method based on the actual type of
the object. For instance, since equals in Integer overwrites equals in Object, the
equals method of Integer will be called on an Integer object.
Dynamic method lookup, however, can be optimized if the method to be called can be
uniquely determined by the type hierarchy. Such an optimization is called devirtualization.
For instance, consider a static method2 that takes an ArrayList and calls an equalsmethod
on its element:

public static <T> void originalMethod(ArrayList<T> arr) {
boolean test = arr.get(0).equals(arr.get(1));
System.out.println(test);

}

The method is called as follows:

ArrayList<Integer> arr1 = new ArrayList<Integer>();
arr1.add(new Integer(5));
arr1.add(new Integer(5));
originalMethod(arr1);

The method prints true which proves that the equals method of Integer is called
(the equals in Object would have returned false because it compares memory ad-
dresses only, and the two integers in the array have different addresses). However, the
invokevirtual bytecode instruction calls the Object method (the two calls to get
are included to provide the context of the call):

invokevirtual #89 <research/util/ArrayList.get>
aload_0
iconst_1
invokevirtual #89 <research/util/ArrayList.get>
invokevirtual #104 <java/lang/Object.equals>

The call to equals gets resolved to the overwriting method in Integer only at runtime,
based on the actual class of the ArrayList element which is an Integer. Thus the
dynamic method lookup is non-trivial.

2Static methods in Java are methods defined for an entire class, not for individual objects. Methods in
Java can be parameterized separately from the class that surrounds them. For details see [1].

5



If the method is known to take ArrayListInteger instead of ArrayList then the
target of the call to equals is known to be in the Integer class right when the pro-
gram is loaded. Note that the change from ArrayList to ArrayListInteger as the
method parameter also leads to the change of the type bound for the method (from <T>
to <T extends Integer>), otherwise ArrayListInteger would not be a valid
parameter to the method:

public static <T extends Integer> void
optimizedMethod(ArrayListInteger<T> arr) {

boolean test = arr.get(0).equals(arr.get(1));
System.out.println(test);

}

The method call is completely analogous to the one above for ArrayList. The bytecode
changes to the following:

invokevirtual #96 <research/util/ArrayListInteger.get>
aload_0
iconst_1
invokevirtual #96 <research/util/ArrayListInteger.get>
invokevirtual #99 <java/lang/Integer.equals>

Here the equals method is of class Integer. The method target is unique (it can only
be in the class Integer since nothing overwrites it) and the method call can be replaced
by a direct ”jump” to that target, i.e. devirtualized. Thus more precise type information
saves time for method lookups.
Note that in the first example with ArrayList the call can still be devirtualized at runtime
based on statistical evidence that the Integer method gets called the most frequently.
However, hundreds of calls will be needed to gather the statistics, and such an optimization
would have to be able to ”roll back” if the call target changes [3]. Thus it is less efficient
than the devirtualization when the target of the method call is known precisely when the
program is loaded.
In our tests we have observed program speed-ups of up to 20% (see [5]). Note, however,
that sometimes a specialization may also increase the running time. This happens, for
instance, when a generic data structure stores its elements as an array of Object type, but
the specialized version uses an array of Integer instead. Then an additional typecheck
may be needed before an element is added to the array, whereas the non-specialized version
could safely add any object without a typecheck. The exact cases when this happens depend
on types of method parameters.

1.3.2 Partial and Complete Specializations

Interestingly, in Java a generic type that inherits from a generic interface may have a more
restricted type bound than the interface. For instance, suppose an interface is defined with
the default Object bound for its type parameter T:

interface List<T>

6



It is possible for a class to implement List<T> but to restrict the parameter to Integer:

class ArrayListInteger<T extends Integer> implements List<T>

This feature allows us to specialize only a part of a class’s hierarchy, not the entire hi-
erarchy. For instance, in one optimization version we specialize ArrayList but not
List (very similar to the example above, except the example omits several classes in
the ArrayList hierarchy). We refer to specializations that specialize only a part of a
class’s hierarchy as partial specializations, in contrast with complete specializations that
specialize the entire generic hierarchy of a class, including all classes and interfaces that it
inherits from.
The advantage of a partial specialization is that fewer classes need to be changed since
classes that use higher-order interfaces would not be affected by specialization of classes
that implement them.
Our tests show mixed efficiency results for partial specializations: some partial specializa-
tions actually perform worse than the original code for some tests, but some perform just
as well as the complete specialization, and in some cases even better. We found out that
in the ArrayList hierarchy specializing List interface but not interfaces above it gives
the optimal behavior. We call this specialization interface specialization. For more details
on our specializations see section 2.2, for the results and discussion see section 3.

1.3.3 Dynamic Effects of the Specialization

Typecast elimination and change in types in invokevirtual are the most straightfor-
ward effects of specialization of generics and are easy to detect in the bytecode. Such
changes in the code account for a substantial percent of running time decrease. However,
there are also some changes in behavior that cannot be directly explained by changes in the
bytecode. They include method devirtualization that happens dynamically based on statis-
tical data about method calls, method inlining, dynamic typecast elimination, and similar
optimizations. They also contribute to runtime improvement for some specializations, al-
though in some cases they may cause a slowdown.
Understanding these less obvious dynamic effects is a necessary but challenging task.
This paper focuses on such effects, using tests for set, add, and get method of the
ArrayList class in the Java collection framework (JCF).

2 ArrayList Example

2.1 JCF ArrayList Hierarchy and our Examples
The Java Collections Framework, or JCF, is an architecture that allows us to represent and
manipulate collections in a quicker and easier way. The JCF include interfaces, implemen-
tations and algorithms. Interfaces specify general behavior of a collection. For instance,
List interface specifies methods that any list must have, such as add and get, but their
implementation may differ in different classes that implement List, e.g. ArrayList
and PriorityQueue. JCF also provides algorithms for common operations, such as
sorting. As of Java 1.5, most classes in JCF use generics.

7



Figure 1: The hierarchy for ArrayList

8



To study the effects of generics specialization (see section 1.3.1) we looked at different spe-
cializations of the source code of ArrayList. We have copied the entire ArrayList
hierarchy. To ensure that we are not accidentally referring to the standard ArrayList
and other JCF classes, we simply renamed our copy to include an R before the name, e.g.
RArrayList instead of ArrayList. We also used our own class TestInteger in-
stead of Integer to guarantee that there are no inadvertent boxing/unboxing effects. Just
like Integer, TestInteger stores a single int value and implements Comparable
interface. It also has a static counter that counts the number of times compareTo was
called; we use it in some tests.
As shown in diagram 1, in JCF ArrayList implements a List interface and extends an
AbstractList class (for simplicity the diagram uses the original names in JCF with-
out the R prefix; ignore the letters in parentheses, they will be explained in section 2.2).
AbstractList in turn extends AbstractCollection. Collection interface is
a supertype for both List and AbstractCollection. The hierarchy also includes
iterators and the Iterable interface.
Diagram in figure 2 shows the structure of our tests. The left-hand side shows types of
variables for various objects that we use and the method calls. The right-hand side shows
the corresponding objects, those created by the constructor and (in the last line) the ac-
tual call of add on the ArrayList (note that the copy of ArrayList that we use is
RArrayList). The diagram only shows a call of add, but the same sequence is used
for other method tests as well. The rectangular block of the diagram shows the type bound
of the class or interface. For instance, the constructor of ArrayList runs in the context
where the type parameter T is bound by Object.
Our test starts by creating a new RArrayList parameterized with TestInteger. We
refer to the RArrayList via an RList variable.

RList<TestInteger> special = new RArrayList<TestInteger>();

The RArrayList is what we are going to be performing our adding, setting, getting, etc.
operations on. Our “client” code, i.e. the code that uses the RArrayList, is located in a
class ListReader. In the examples considered here the “client” code consists of various
test methods (we tests each ArrayList method individually). The ListReaderclass
is generic and its bound is Comparable:

public class ListReader<T extends Comparable<T>>

The Comparable bound is chosen because we wanted to model a sorting algorithm which
calls compareTo on RArrayList elements to sort them. In this paper we focus on
effects of ArrayList methods and do not discuss compareTo. As seen in diagram 2,
we create ListReaderwith an Integer type parameter. We are adding a small number
of elements to the RArrayList (the default is 2, but it can be changed by passing an extra
flag to the program) and iterate over these elements. This way the heap space is small and
there is no garbage collection.
Our tests are repeatable which means that once a test is written and ran, it is never changed.
Tests are chosen based on a flag passed to the program via command line. We can also
control the number of loops performed by the program from the command line by passing

9



a corresponding parameter that is stored in the variable numLoops. Since the goal of the
tests is to detect time differences between the optimized and non-optimized code, we call
the method that we are testing a very large number of times: the parameter passed on the
command line is usually between 20,000 and 60,000 and it indicates the number of times
we iterate over a loop that calls the corresponding method of RArrayList 10,00 times.
After the flags are read, a new ListReader<Integer> called reader is created and
an appropriate test method is called (in this example, set method):

reader.testSet(special, numLoops);

Below is the testSet method in the ListReader class. The RArrayList is passed
to the method as a variable of type RList:

public int testSet(RList<T> special, int numLoops) {
T element = special.get(0);

int size = special.size();
for(int i = 0; i < numLoops; i++){

for(int j = 0; j < 10000; j++){
special.set(j%size,element);

}
}
return special.get(0).hashCode();

}

The return of the method is needed to prevent the JIT from applying dead-code elimination
to the method.

2.2 Six Optimizations of ArrayList Example
Our optimization creates specialized copies of classes for the actual type parameters used in
the program. For this group of tests the actual parameter is TestInteger. For instance,
RArrayListInteger is a specialized copy of RArrayList defined as follows (omit-
ting the “extend” and “implement” clauses):

public class RArrayListInteger<E extends TestInteger>

The body of the class is exactly the same as RArrayList except that every time a new
Object[] is created in the original code, a TestInteger[] is created in the spe-
cialized version. The reason for this is that if we store elements in an array of Object,
we would lose most benefits of the optimization since there will still be typecasting when
elements are retrieved by a get method.
The six versions of the program that we compare differ in the classes and interfaces that
are specialized. Note that the “client” class ListReader is specialized in some versions
but not in others. Its non-specialized version has Comparable as its bound, and the
specialized version has TestInteger. Figure 1 marks every class with a list of versions
of the optimization in which it is specialized. The six versions are as follows:

• O is the original code with no classes specialized.

10



Variables Objects

ListReader < Integer > //

��

T extends Comparable<T>
ListReader < Integer >

List < Integer > //

��

T extends Object
ArrayList < Integer >

T extends Comparable<T>
ListReader < T >.testAdd(List < T >)

��
T extends Object
List < T >.add(T )

// T extends Object
ArrayList < T >.add(T )

Figure 2: Method calls and types for our test example

• In S only the “client” ListReader class is specialized.

• In AL the only specialized class is RArrayList.

• In ALS combines AL and S: RArrayList and ListReader are specialized.

• In LS the interface RList and all classes below it in the hierarchy are specialized.
This causes specializing ListReader, RArrayList, RAbstractList, and
some inner classes. This is an interface specialization (see 1.3.2).

• C is a complete specialization: the entire ArrayList hierarchy is specialized and
so is ListReader.

Note that AL, ALS, and LS are partial specializations since they only modify a part of the
ArrayList hierarchy.

2.3 Testing Methodology, Framework, and Challenges
In order to make sure our tests are accurate we run each test 20 times in each of the client
and the server modes. This process ensures that we can identify outliers and come close to
the true mean of the run times. We use automated scripts to recompile the program, run all
versions of it with the same flags, and record the statistical data. We measure the run-times
using the system time command. While this includes the JVM startup and loading time, the
large number of loops in our test runs ensure that the startup is not a significant factor.
The JVM’s lack of transparency makes it difficult to design tests that clearly test only
one aspect of a program. This means that any change in the code must be meticulously
replicated across the code. Surprising amounts of variance in efficiency can come from
aspects of programs that are not commonly associated with efficiency such as return types,
public versus private accessibility, and similar minor changes.

11



Since the tests were not ran on a dedicated machine, they were subject to interference from
operating system processes running, CPU limitations, memory limitations and many more
factors. We take a number of precautions (discussed in section 2.3.1), the most significant
of which is running the tests many times. It is this repetition that makes any results obtained
statistically significant. Some tests, however, are more vulnerable to these interferences and
it is made obvious by the variance in their results. More memory-intensive tests, such as
add, belong to this category.

2.3.1 Test Setup

When dealing with containers, such as ArrayList, there are three operations that are
almost always the most called: get, set, and add. When optimizing programs these three
operations provide their own unique challenges. For instance, in add tests we have to make
sure that the array size does not grow to the point when the garbage collection becomes an
issue. In order to achieve consistency in our tests we chose to test each of these three
operations separately. This is discussed further in section 3.
One precaution that is taken to obtain consistency in the tests is that all of our tests are run
on the same computer. The specifications for the computer we used are:
AMD AthlonTM64 Processor 3200+
512MB DDR RAM
Fedora Core 7
Kernel: 2.6.23.17-88.fc7 SMP i686
Java Version: Sun JDK 1.6.0 04
Time Binary: GNU time 1.7
glibc version: 2.6
It is important to note that this computer is part of a public lab environment where the user
accounts are stored on a central server. To keep this from impacting the tests, the testing
script is run from the /tmp directory on the computer to avoid interference from the server
file system. Once the script has finished the results are used to produce statistical data and
graphs. The results are committed to version control system (cvs).

3 Tests, Results, and Observations

3.1 Tests for Get
Lets look at the code in ListReader that tests the get method:

public Object testGet(RListInteger<T> special, int numLoops) {
Random r = new Random();
Object[] gadgets = new Object[10 + r.nextInt(100)];
int size = gadgets.length;
for (int i = 0; i < numLoops; i++) {

for (int j = 0; j < 8675309; j++) {
gadgets[j % size]= special.get(j % 2);

}

12



}
return gadgets[r.nextInt(size)];

}

The method itself in ArrayList (or, equivalently, in RArrayList), looks like this:

public T get(int index) {
RangeCheck(index);

return elementData[index];
}

For get numLoops is usually about 1000-5000 (significantly less than set or add).
This method returns a randomly selected element. This return is used to help avoid any
dead code elimination (an optimization done by JIT compilers). The results for the server

1−C 2−LS 3−ALS 4−AL 5−S 6−O

25
26

27
28

29

Server: random−get 100 5000

C
P

U
 T

im
e 

(s
ec

.)

Figure 3: A test run using the get method with 5000 loops on the server JVM

version of the JVM are shown in figure 3. They show no significant difference between any
of the specializations and the original unspecialized code. The same test in the client JVM
shows similar results. This shows that the specialization does not affect get method if its
result is not cast to a more specific type. Note that if there is a typecast to TestInteger
in the testing method then the specialized versions would benefit from typecast elimination.
However, our goal is to study behavior of the ArrayList methods themselves, and not
their interactions with other code.

13



3.2 Tests for Set
Now since the code for testSet was covered in section 2.1. Below is the code for set;
RangeCheck is a private method that checks whether the index is within the valid range.

public T set(int index, T element) {
RangeCheck(index);

T oldValue = elementData[index];
elementData[index] = element;
return oldValue;

}

This method is similar to the get method except that set also stores the element in the
array. Figure 4 shows that the ALS specialization performed significantly better than both

1−C 2−LS 3−ALS 4−AL 5−S 6−O

11
.5

12
.0

12
.5

13
.0

13
.5

14
.0

Server: set−adj 40000

C
P

U
 T

im
e 

(s
ec

.)

Figure 4: A test run using the set method with 40000 loops on the server JVM

the original code and the other specializations in the server JVM. In the client JVM all
optimizations performed worse than the original code and (with the exception of the C
specialization) also performed worse than that same specialization in server.

3.3 Tests for Add
While writing the tests for add we endeavored to keep the code as close to the code for get
and set as possible:

14



public int testAdd(RList<T> special, int numLoops) {
T element = special.get(0);

for(int i = 0; i < numLoops; i++){
special.clear(); // get rid of the old elements

for(int j = 0; j < 10000; j++){
special.add(element);

}
}
return special.get(0).hashCode();

}

add calls a public method ensureCapacity to increase the size of the array if needed:

public boolean add(T o) {
ensureCapacity(size + 1);
elementData[size++] = o;
return true;

}

The only difference between testSet and testAdd (besides calling different meth-
ods) is that testAdd removes all the old values before adding the new value. set and
add, however, have more differences. Firstly, add calls ensureCapacity instead of
RangeCheck because for add the size of the ArrayList may need to be increased (re-
call that ArrayList doubles the size of the storage array when the current array becomes
insufficient). For this reason size is also incremented. add also doesn’t store the old value
of the index in the ArrayList because it returns true instead of the old value. Although
different, the use of the return values in test code have the same purpose of avoiding dead
code elimination. Figures 5 and 6 are good examples of the variation between client and
server JVMs. In figure 5 all of the specializations are tightly grouped at about 35% faster
than the original (unspecialized) code (except for the AL specialization, which is slower).
In contrast to that, many of the client times in figure 6 have a much larger variance, and all
are slower than the original code.

4 Conclusions and Future Work
Our tests show a large variety of behavior for very simple methods in ArrayList when
we perform the same six versions of specialization. We have also observed drastic differ-
ences between the client and the server dynamic compilers. The server compiler seems to
benefit more from our specializations. This is encouraging because the server JVM mode
is usually used for high-performance programs. We also observed that the interface spe-
cialization (LS) performs just as well as the complete one (C). This observation opens an
opportunity for a specialization that affects only a subset of a program.
Despite an extensive data collection, however, we still do not have a proven explanation
of the differences between the six optimizations and between the three methods that we
have considered. While we have formed plausible hypotheses, the lack of transparency

15



1−C 2−LS 3−ALS 4−AL 5−S 6−O

5
6

7
8

Server: add−adj 40000

C
P

U
 T

im
e 

(s
ec

.)

Figure 5: A test run using the add method with 40000 loops on the server JVM

of the JVM optimizations makes it difficult to prove or disprove them. Our immediate
future goals are two-fold. Firstly, we would like to improve the testing methodology to
allow us to narrow down program behavior patterns, perhaps by creating methods in our
copy of the ArrayList that would emphasize specific features of the three methods in
question (get, set, and add). Secondly, we would like to utilize tools, such as JVM
command-line options and profilers, to observe the behavior of the JVM with respect to
dynamic optimizations. For instance, if we can detect from an output of a profiler that a
certain method was inlined in one optimization but not in the other, we can generalize these
patterns to other program. Our ultimate goal is to implement an algorithm for specialization
of generic types which would apply it when it is beneficial.

References
[1] BRACHA, G. Generics in the java programming language. Sun Microsystems,

java.sun.com (2004).

[2] EJ-TECHNOLOGIES. Jclasslib Bytecode Viewer, version 3.0. www.ej-
technologies.com.

[3] ISHIZAKI, K., KAWAHITO, M., YASUE, T., KOMATSU, H., AND NAKATANI, T.
A study of devirtualization techniques for a java just-in-time compiler. In OOPSLA

16



1−C 2−LS 3−ALS 4−AL 5−S 6−O

10
11

12
13

14
15

16

Client: add−adj 40000

C
P

U
 T

im
e 

(s
ec

.)

Figure 6: A test run using the add method with 40000 loops on the client JVM

’00: Proceedings of the 15th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications (New York, NY, USA, 2000), ACM Press,
pp. 294–310.

[4] LINDHOLM, T., AND YELLIN, F. The Java(TM) Virtual Machine Specification (2nd
Edition). Prentice Hall PTR, April 1999.

[5] MAYFIELD, E., ROTH, J. K., SELIFONOV, D., DAHLBERG, N., AND MACHKASOVA,
E. Optimizing java programs using generic types. In OOPSLA ’07: Companion to
the 22nd ACM SIGPLAN conference on Object-oriented programming systems and
applications companion (New York, NY, USA, 2007), ACM, pp. 829–830.

17


