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Abstract
Java generic types allow a programmer to create parameterized data structures and methods.
For instance, a generic Stack type may be used for integers in one instance and for strings
in another. Java compiler guarantees in this case that integers and strings are not mixed
in the same stack. We study runtime efficiency of a certain inheritance pattern related to
Java generic types: narrowing of a type bound. This pattern takes place when a generic
type allows a more restricted type of elements than its supertype. We examine a slowdown
caused by this pattern for some method calls and study the reasons for it. Knowing cases
when the slowdown takes place and the reasons for it would allow software developers to
make informed choices when using generic types in their programs.

1 Introduction
Generic types are a feature of Java that allows writing program code that is parameter-
ized over types. For instance, generic types allow creation of a Stack class that works for
strings or integers, but will not allow mixing strings and integers in the same stack. In this
case String or Integer class are referred to as type parameters for the generic Stack class.
When a generic type in Java is defined, the programmer must specify the most general type
of its type parameter, called the type bound. For instance, the type bound of a generic
EmployeeList type would be Employee. This means that the type parameter of
EmployeeList is allowed to be any subtype of Employee, e.g. HourlyEmployee.
If no explicit bound is specified for a generic type, its bound is Object.
Generic types may by subtypes of other generic types. Commonly the type bound of a
subtype is the same as the type bound of its supertype. However, Java allows for the
subtype to have a more restrictive bound than its supertype. We call this inheritance pattern
a bound narrowing. We examine runtime efficiency effect of bound narrowing. We are
comparing 3 cases of relations between a generic type and its supertype:



1. Both the type and its supertype have an Object as a type bound.

2. Both the type and its supertype have a more specific bound, such as Integer.

3. The type has a specific bound such as Integer and its supertype has a more general
one, such as Object.

In our tests we use a class ArrayList and an interface List in the Java Collections
Framework. We create modified versions of the ArrayList hierarchy, narrowing bounds
for some of the types. Our tests make multiple calls to ArrayList methods (such as get
and add) via a List interface. We measure the total running time of the program. We
run our tests in different settings of the JVM, including a mode that does not perform any
dynamic program optimizations (pure interpreted), a mode where a specific optimizations
inlining is turned off. We also run them in the regular mode where all optimizations are
enabled.
We observe that in an interpreted mode there is a substantial slowdown in case 3 compared
to cases 1 and 2 above. We discuss reasons for this slowdown. We relate this slowdown
to inlining and show that for some methods dynamic optimizations in the regular mode are
able to remove this slowdown, but it remains for some methods. Our results will allow
software developers to make informed choices about bound narrowing when implementing
hierarchies of Java generic types.

2 Background

2.1 Java Generic Types
2.1.1 Overview of Java Generic Types

The Java programming language includes classes and interfaces, both are collectively re-
ferred to as types. Java relies on the fact that its variables have specific types. Java’s type
hierarchy has a class Object at the top and all other types are subtypes of type Object by
default. Classes can be subtypes of interfaces or classes and inherit all the methods of the
parent type, while having more specialized methods than the parent.
Note that in this paper we are considering only Object types; in Java there is a difference
between Object types and corresponding primitive types. For example, there is an Object
type Integer, and a corresponding primitive type int. Object type Integer has meth-
ods and expanded usability while the primitive type int is the raw data form of an integer.
In our examples, we use Integer and not int.
Java and several high level programming languages that use types share a feature called
generic types, or generics for short. Java generics allow for the inclusion of parame-
ters on data containers such as list. Parameters force the container to hold elements of
a specific type. An example of this would be an ArrayList with a type String
(i.e. ArrayList<String>). This ensures that all the elements in the ArrayList
are strings. String-specific operations can be done and methods can be called on elements
of the ArrayList<String> without having to verify that every element is a String.
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Ultimately this is used to iterate over lists and call methods on its individual elements, as
shown below:

ArrayList<String> alString = nonEmptyArrayList();
String concat = "";
for(String s: alString){
concat += s.toLowerCase();

}

Bounds in Java generics are types used to limit generic parameters while still allowing
more than one specific type of parameter. The limit of generic parameters is to sub-
types of the bound. An example of a bound at the class declaration of a class called
MyComparableList is:

public class MyComparableList<T extends Comparable>{
//methods and constructor
}

Here, the bound is type Comparable, which is an interface with the method compareTo().
This ensures that all elements in MyComparableList implement Comparableinterface
(note that the keyword for declaring a bound is extends regardless of whether it is fol-
lowed by a class or an interface) [1].

2.1.2 Narrowing a Type Bound

Interestingly, if a Java generic type inherits from a generic interface or a class, the supertype
may have a less restrictive type bound than the type itself. We refer to this inheritance
pattern as narrowing the type bound. For instance, suppose an interface is defined with the
default Object bound for its type parameter T:

interface List<T>

It is possible for a class to implement List<T> but to restrict (narrow) the generic type
parameter to Number:

class ArrayListNumber<T extends Number> implements List<T>

In this case only Number and its subtypes are allowed as actual type parameters for
ArrayListNumber. For instance, ArrayListNumber<Integer> is valid because
Integer is a subtype of Number, but ArrayListNumber<String> is invalid since
String is not a subtype of Number.
This inheritance pattern allows more flexible code (for instance, we may have only one
List implementation, but multiple more specific classes that inherit from it). However,
there are two prime concerns with this choice of generic bounds for inheritance.
One concern is the possibility of code that typechecks at compilation type, but has a runtime
type exception. For instance, consider the following code fragment:
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List<String> theList = new ArrayListNumber();
theList.add("hello");

Since String is a valid type parameter for List, the first line is valid. The second one is
also valid because it is adding a string to an list of strings. However, since theList refers
to ArrayListNumber and the bound of the ArrayListNumber is Number, the call
to add with a string parameter throws a runtime ClassCastException.
Note that in order to get the code to compile we had to use an unsafe style of programming:
declaring a generic type without the actual type parameter. If we use a type parameter
in the declaration of ArrayListNumber, the code does not compile because the actual
type parameters do not match:

List<String> theList = new ArrayListNumber<Integer>();

While the direct declaration does not compile, in a complex program it is possible that a
subtype with a narrowed bound (such as ArrayListNumber) is passed via a method or a
sequence of methods so that the static compiler cannot trace the type parameter mismatch.
Narrowing type bounds opens a possibility of a runtime error in a statically type checked
code which is a type safety violation.
The other possible issue related to narrowing type bounds is efficiency. Since it is possible
for this pattern to throw a ClassCastException, there must be a type check performed
at runtime to detect a type mismatch. Our paper investigates whether this type check leads
to a runtime inefficiency.

2.2 Java Compilation Model
Unlike statically compiled languages, in which a program is optimized and compiled into
machine code at once, Java has a two phase compilation model. First, the program is
compiled by a static compiler such as Javac into bytecode for portability. Second, the
bytecodes are executed on any system that has a Java execution environment, referred to
as the Java Virtual Machine (JVM). Most modern JVMs are equipped with a Just-in-time
compiler (JIT) that performs optimizations as the program is being run and may convert a
portion or all of a program’s bytecode to native code “on the fly”. This process is called
dynamic compilation.

2.2.1 Overview of HotSpot JVM client and server mode

HotSpot is the name of Sun Microsystems’ JVM, which is one of the most commonly used
JVMs in the market. This JVM can run in client or server mode. Client mode focuses on
loading programs faster and uses a simple JIT compiler that will not make heavy optimiza-
tions. Server mode is slower loading but analyzes the program more thoroughly and thus
optimizes the code more effectively. The performance increases in the server mode can be
noticeable in longer running programs.
On the Java 2 Platform, the client dynamic compiler has the following key features [8]:

• It uses static single assignment (SSA) form as an internal program representation.
SSA is a representation in which each variable is assigned only once. It improves
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compiler performance because values of variables do not change so the code is easier
to analyze [3].

• The emphasis is placed on extracting and preserving as much information as possible
from the bytecode. For example, variable usage information and dependencies of
method calls are extracted. This approach leads to reduced compilation time. The
client VM does only minimal inlining and no deoptimization (see section 2.3). The
lack of deoptimization leads to focusing primarily on local optimizations [3].

• Default compilation threshold for client is∼1500. This means that the JIT selects the
methods to be compiled based on the frequency of their execution. When a method’s
execution counter reaches the compilation threshold, the method is compiled to na-
tive code.

For the server dynamic compiler, we should mention [8]:

• It is tuned for the performance patterns of a typical server-side application.

• It uses an advanced static single assignment (SSA)-based internal representation, dif-
ferent from the one used by the client JVM.

• The optimizer performs all the classic optimizations, including dead code elimina-
tion, loop invariant hoisting, common subexpression elimination, constant propaga-
tion, and deep inlining (see Section 2.3).

• Default compilation threshold: ∼10000.

2.2.2 Overview of Java Bytecode

When a Java program is compiled by a static compiler such as Javac, a portable and plat-
form independent code is generated and saved in .class files. A bytecode file is a collection
of step by step instructions representing the original program.
A Java bytecode instruction consists of an operation code (also known as opcode) followed
by zero or more operands. Operands often refer to elements of a class’ run-time constant
pool. A constant pool contains constants and references to objects and method used in a
given class. Constant pool elements are represented in bytecode instructions by a # fol-
lowed by a number, such as #24. The first letter of an instruction indicates the type of
operand it is operating upon, for example: i - integer and a - a reference to an object;
there are also indicators for other types. See [5] for more details. The bytecode instructions
relevant for this paper can be grouped into six groups:

• Load and store (e.g. aload, istore)

• Object creation (e.g. new)

• Control transfer (e.g. ifeq, goto)

• Getting a field of an object (e.g. getfield)
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• Typecasting and exceptions (e.g. checkcast, athrow)

• Method invocation and return (e.g. invokespecial, invokevirtual,
areturn)

For example, istore 3 stores an int value into variable 3, aload 1 loads an object
reference onto the stack from local variable 1.
Furthermore we should explain the following four bytecode instructions:

• invokevirtual denotes a method call that gets resolved dynamically (i.e. at run
time). Since methods of a superclass can be overwritten in a subclass, a dynamic (or
virtual) method lookup is performed to determine the right method to call.

• invokeinterface is used for method calls on an interface variable. For instance,
if theList is a variable of type List, the call theList.get(i) translates into
invokeinterface. If the method invoked is not in the current object, super-
classes of the current object are searched for the method.

• invokespecial is used when invoking a private method in a class or in other
cases when the class is known at the static compilation time, such as when accessing
a method via the keyword super.

• checkcast - dynamic typecast, e.g. (String) obj. If successful, returns an
object that can be referenced via the new type. For instance, if obj is indeed a
String then (String) obj can be referenced via a String variable. If the
cast fails at runtime, a ClassCastException is thrown.

While bytecode generated for a program varies between different compilers (e.g. javac and
eclipse compiler), the elements essential for our research, such as method calls and typecast
operations, are the same for all the compilers that we have tried.

2.3 Dynamic Program Optimizations
Within HotSpot’s execution process a few things happen as the program is running, such
as bytecode execution, profiling, and dynamic optimization [4]. While execution of the
program is taking place, the JVM gathers profiling data which is used to determine the
“hot” sections of code, i.e. those that are executed frequently. Once such a section is iden-
tified, the JIT can spend more time optimizing these “hot” sections. Profiling data and
run-time program analysis allow the dynamic compiler to determine what optimizations
to perform [2]. This dynamic process allows Java to generate code that is specifically op-
timized for the underlying hardware and for a specific usage of a program. We will be
referring to this process as dynamic optimization [4]. Below we discuss dynamic optimiza-
tions that are particularly relevant to our work:

• Devirtualization: replacing a dynamic method lookup along a class hierarchy by a
direct jump to the method when the target of the call can be uniquely determined [5].
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• Method inlining: replacing a method call by a copy of the methods code when the
call target can be uniquely determined (often follows method devirtualization) [5].

• Deep inlining and inlining of potentially virtual calls: method inlining combined with
global analysis and dynamic deoptimization are used by both the server compilers to
enable deep inlining (i.e inlining of methods which call other methods that are also
being inlined) [5].

• Dead code elimination: removal of unneeded code that does not affect the actual
program. For example if a method returns a result of a mathematical operation and
this result is never used, then this instance of the method call is removed [5].

The JIT also performs optimizations more specific to Java technology, such as null-reference
check, range-check elimination (eliminating unneeded checks for an array index positioned
within the array), and optimization of exception throwing paths [9].

2.4 Implementation of Java Generic Types
Java generic types are implemented using type erasure. Type erasure is the implementation
of generic types where only one compiled copy of a generic type definition exists in a
program. All instances of the generic type refer to that same definition. For instance, if a
program uses ArrayList<String> and ArrayList<Integer>, they both refer to
the same definition of ArrayList – the one with the bound Object. At compilation
time type correctness of generic types is verified and type casts are inserted for methods
that return objects, such as get, as shown below.
ArrayList takes a generic parameter that extends Object. Java adds casts in bytecode
to specific types that are returned from methods. It is shown in bytecode that there is in fact
a type check when accessing a container with generic types. For example:

import java.util.ArrayList;
public class BytecodeExample {

public static void main(String[] args) {
ArrayList<String> alString = new ArrayList<String>();
//add some elements to alString
String exampleString = alString.get(3);
System.out.println(exampleString);

}
}

Below is a segment of the bytecode of the above example. On line 41 it shows that there
is a cast check to string when accessing alString.get(3) to verify that it can be
stored in the string container done on line 44 with astore. This corresponds to the above
assignment statement String exampleString = alString.get(3).

38 invokevirtual #30 <java/util/ArrayList.get>
41 checkcast #34 <java/lang/String>
44 astore_2
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Other languages, such as C++, do not use type erasure. Consequently, there is a new
instance of every type generated for every declaration where a new parameter type is used.

3 Specialization of Generic Types

3.1 Goals and Overview.
Our overall research is centered around an optimization of Java programs that we call spe-
cialization of generic types. The specialization aims at counteracting negative performance
effects of type erasure (see Section 2.4). The key idea is to create a copy of a generic
type with the type bound replaced by a more specific type, such as an actual type parame-
ter. For instance, if a program uses ArrayList<Integer>, a separate specialized type
ArrayListInteger is created. The bound of the original ArrayList is Object, the
bound of the newly created ArrayListInteger is Integer. The rest of the code of
ArrayListInteger is practically the same as in ArrayList with a few differences
that are not important here.
If a program additionally uses ArrayList with a different actual type parameter, e.g.
ArrayList<String>, then a separate type ArrayListString with the type bound
String is created. The specialization may also be applied to interfaces and parameterized
static methods. The optimization changes the Java source code of the program.
The specialization improves program performance in two major ways: it leads to elimina-
tion of unnecessary type casts and provides opportunities for the JVM to better optimize
the code, utilizing more precise type information. In our tests we have observed program
speed-ups of up to 20% due to specialization (see [7]).
Note, however, that sometimes a specialization may also increase the running time. This
happens, for instance, when a generic data structure stores its elements as an array of
Object type, but the specialized version uses an array of Integer type instead. Then an
additional typecheck may be needed before an element is added to the array, whereas the
non-specialized version could safely add any object without a typecheck. The exact cases
when this happens depend on types of method parameters.

3.1.1 Partial and Complete Specializations

A straightforward way to perform specialization is to specialize the entire generic type
hierarchy containing a given type. For instance, if we want a specialize ArrayList, we
would also specialize all generic classes and interfaces that ArrayList inherits from,
such as its superclass AbstractList and the interface List that it implements. We
call such a specialization complete.
While a complete specialization provides the most specific type information for every type,
it requires changes to large segments of a program, sometimes in parts of the program that
are not related to the type in question. This approach duplicates a lot of program code since
specialized versions of many classes need to be created. Handling these additional classes
may potentially have a negative performance effect of its own.

8



An alternative approach is to specialize only a subset of classes and interfaces based on the
actual usage. This approach leads to narrowing a type bound (see section 2.1.2) for at least
some generic types, i.e. it creates cases when the bound of a class is more specific than
the bound of a class that it extends or an interface that it implements. For instance, when
specializing ArrayList to Integer bound we may leave the original Object bound
on a List that ArrayList implements. We refer to specializations that specialize only
a part of a class’s hierarchy as partial.

3.2 ArrayList Hierarchy in the Java Collections Framework
In our research we use a subset of the Java Collections Framework, or JCF. JCF is an ar-
chitecture that implements standard data structures for storing data, such as stacks, queues,
maps, etc. As of Java 1.5, most classes in JCF are generic. All of these data structures
are referred to as collections. All collections have some common operations, such as
adding an element via a method add. This general functionality is specified in the in-
terface Collection<T> that all collections implement.
More specific functionality may be given by sub-interfaces of Collection<T>, such as
List<T> interface which requires additional methods that specify an index at which an
element is located. For instance, method get(int index) returns an element at a given
index.
To study the effects of the specialization, we used the JCF implementation of ArrayList
class. We made our own copy of the source code of the entire ArrayList hierarchy and
also created several copies of this code specialized in different ways. We used our own copy
of Integer class with a slightly different name to guarantee that there are no inadvertent
conversions between this class and a primitive type int. Just like a predefined Integer
class, our version contains a single int value and implements the Comparable interface.
As shown in Figure 1, ArrayList implements List interface and additionally extends
AbstractList class. AbstractList in turn extends AbstractCollection.
Collection interface is a supertype for both List and AbstractCollection. The
hierarchy also includes Iterable interface.

3.3 Structure of the Program.
In our research we study runtime behavior of different methods in ArrayList, such as
get and add, and the effect of type bound narrowing on their behavior. We started with
a non-specialized version of the code and then created several specialized versions of the
program (see Section 3.4) that all have the same structure as described here and differ only
in the versions of the classes used. Examples in this section show original (non-specialized)
code. Our testing program is a Java application that starts by running the method main
which then calls a specific testing method based on a flag passed at the startup.

3.3.1 Main Class and ListReader

The main class reads necessary flags for a test run that indicate which specific test will be
running, as well as the number of loops and other setup information. It creates ArrayList
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<<interface>>
Iterable

<<interface>>
Collection

<<interface>>
ListAbstractCollection

AbstractList

ArrayList

Figure 1: ArrayList hierarchy in JCF.

(or its specialized version). The array list is referenced via its interface List:

List<Integer> theList = new ArrayList<Integer>();

Elements are then added to the list. Since we would like to avoid effects of Java automatic
Garbage Collection (GC), we use very few elements in the array (usually two) and iterate
over them multiple times.
The main class also creates an instance of a class that we call ListReader. This is our
own class, not a part of JCF. The ListReader has all our testing methods (see Sec-
tion 3.3.2) and is itself generic. This class was originally designed to perform quicksort
and therefore has a type bound Comparable to allow for calls to compareTo:

public class ListReader<T extends Comparable<T>>

In some versions of the code the bound of ListReader is different, see Section 3.4. An
instance of ListReader is created in the main class:

ListReader<Integer> reader = new ListReader<Integer>();

3.3.2 Testing Methods in ListReader

Testing methods in our approach are methods that repeat calls to a specific method in
ArrayList (or in its specialized version) in a loop. Loops have very large values of
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counters (for instance, a test commonly performs 400,000,000 calls to a given method, such
as get). In our tests we compare the times of running the same test method in different
versions of the specializations. The large number of calls allows us to accurately measure
time differences between different versions of the code. It also guarantees that the startup
time of the JVM is insignificant compared to the total program running time and that the
compilation threshold is reached early in the test for both the client and the server mode
(see Section 2.2).
All of our testing methods are located in ListReader class (or its specialized versions).
Consider a testing method for get in ArrayList. T is the type bound of ListReader
class (see Section 3.3.1).

public Object testGet(List<T> theList, int numLoops) {
Random r = new Random();
Object[] objects = new Object[10 + r.nextInt(100)];
int size = objects.length;
for (int i = 0; i < numLoops; i++) {

for (int j = 0; j < 10000; j++) {
objects[j % size]= theList.get(j % 2);

}
}
return objects[r.nextInt(size)];

}

This method is called in main as

reader.testGet(theList, numLoops);

where reader and theList are as shown in Section 3.3.1.
It is important to observe that the ArrayList is passed to the test method not directly but
as its interface List. This is a common practice in software design since this approach
allows a programmer to replace a concrete class by another one, as long as it implements
the same interface. No “client” code (i.e. code that uses the class) needs to be changed
when this replacement takes place. The call theList.get(...) is a call on a variable
of type List, and therefore compiles into the bytecode instruction invokeinterface.
This is the most common pattern used in our tests. However, we also have test cases that
pass ArrayList via its superclass AbstractListwhich results in invokevirtual
bytecode instruction.
There are several issues that we need to consider when setting up testing methods. One
issue is typecasting: if we assign an object returned from the get method to a variable
of type T (that is more specific than Object), we will observe runtime slowdown due to
the execution of checkcast bytecode instruction for each method call. Since the type
T is different in different versions of ListReader, this check will affect these versions
differently. Since our goal is to measure just the overhead of the call to get, we assign the
result to Object array to eliminate typecasting.
Another important concern is avoiding dead code elimination (see Section 2.3). Thus we
store the results in an array and then after the loop, it returns a random element from such
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array. Because it is unpredictable which element will be chosen, the loop cannot be elimi-
nated. The object array is small to avoid effects of GC. Note that later elements overwrite
earlier ones in the array so earlier elements are actually useless, but the optimizing compiler
is not sophisticated enough to optimize away earlier calls.

3.4 Eight Versions of Bound Narrowing.
Recall that the key element in all our tests is ArrayList<Integer> that is usually ac-
cessed via its supertype List<Integer> (see Sections 3.3.1, 3.3.2). We developed eight
different versions of the specialization which specialize different subsets of the ArrayList
hierarchy. All versions of the code follow the structure given in 3.3
Recall that a specialized version of a class means that its type bound is replaced with a
more specific one (see Section 3.1). For instance ArrayListInteger is a special-
ized version of ArrayList which means that ArrayListInteger has a type bound
Integer whereas ArrayList has a bound Object. Also note that ListReader has
three possible bounds: Comparable in the original code, Integer in the specialized
version, and also Object as a test with a more relaxed type bound (see OO and ALO
below).
The following are the cases that we considered. Each version is denoted by a letter code
that is used in the graphs of our results.

• O is the original code with no classes specialized.

• OO is the same as the original, except that the bound in ListReader is changed
(relaxed) from Comparable to Object.

• In S the ListReader class is specialized, i.e. its bound is Integer.

• In AL the only specialized class is ArrayList.

• In ALO ArrayList is specialized class and the bound of ListReader is relaxed
from Comparable to Object.

• In ALS combines AL and S: ArrayList and ListReader are specialized.

• In LS the interface List and all classes below it in the hierarchy (ArrayList,
AbstractList) are specialized. For this versions to compile ListReader must
be specialized as well. Some inner classes in ArrayList hierarchy also must be
specialized.

• C is a complete specialization: the entire ArrayList hierarchy is specialized. Just
like in LS, ListReader must be specialized for the program to compile.

In our tests we observed that in many cases the 8 versions of the specialization tend to
group in the following way, based on their runtime behavior:

• O, OO, and S. We call it the O-group.

• AL, ALO, and ALS. We call it the AL-group.
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• LS and C. We call it the C-group.

Note that the AL-group represents the narrowing of the type bound between the non-
specialized List interface and a specialized ArrayList class.

4 Tests and Results

4.1 Testing methodology
All code and test results are stored inside a subversion repository. This allows for the test
to be easily checked out and changes to the code recorded. All tests are run on the same
machine in /tmp to ensure that network problems do not interfere with the tests.

Our Test Machine.
AMD AthlonTM 64 Processor 3200+
512MB DDR RAM
Fedora Core 7
Kernel: 2.6.23.17-88.fc7 SMP i686
Java Version: Sun JDK 1.6.16 and Sun JDK 1.6.17
Time Binary: GNU time 1.7
glibc version: 2.6

Our test platform uses ruby scripts to set up the environment, run the tests, record runtimes,
and auto-generate from the runtimes. Runtimes are measured with the /usr/bin/time binary.
Our scripts use time -f %U command piped to a file to calculate the program runtime. In
addition we also measure wall clock time by recording the test start time and ending time
and subtracting one form the other for the total runtime. Both times are compared, and if
discrepancies arise on the time comparison, we use the wall clock time since it measures
the overall runing time of the test program from beginning of the execution to the end. Our
approach of using a stop clock methodology to gather runtime information is due to the
fact that it is not possible to utilize a software profiler to get reliable runtime data without
disabling dynamic optimizations [6].
We run all our test in three different JVM configurations:

• Normal Mode: The JVM does not receive any special flag. This enables the JVM to
perform all dynamic optimizations.

• Pure interpreted: In pure interpreted mode the JIT is not running, and therefore
all optimizations are disabled. This implies that the JVM will execute bytecodes
instructions one at a time. This is accomplished by utilizing the JVM flag -Xint. Due
to the slow operation of the JVM in the interpreted mode, we run our test with 5000
loop iterations as opposed to 40000 in the other tests.

• No-Inline: In this cases we run our test with the JIT turned on but with inlining
disabled in order to better understand effects of inlning. For this case we used the
JVM flag -XX:-Inline [6].
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4.2 ArrayList Methods Being Tested
In this study we tested methods that are already defined in ArrayList (namely, get,
add, and set) and also methods that we added to the ArrayList to test certain prop-
erties. In most cases methods that we test have the same bytecode in all eight versions of
the program, but have runtime differences because of different bound narrowing patterns in
different specializations. As an example, consider the method get in the Java collections
library ArrayList class:

public T get(int index) {
RangeCheck(index);

return elementData[index];
}

Here T is the type parameter of the ArrayList class. Because of type erasure (Sec-
tion 2.4) T gets compiled into the type of the ArrayList bound (Object in the non-
specialized version, Integer is the specialzied ones). elementData is an array in
ArrayList of type T that stored the actual objects. RangeCheck is a private method
that checks whether the index is within the array. Recall that private methods are called
via invokespecial.
The method get is compiled into the following bytecode instructions, extracted using
jclasslib bytecode viewer. Our comments before each instruction explain its purpose. See
Section 2.2.2 for details on bytecode.

//Load ArrayList:
0 aload_0
//Load the int index for the method RangeCheck:
1 iload_1
//Call to a private method RangeCheck:
2 invokespecial #36 <research/util/ArrayList.RangeCheck>
//Load a reference from an array for the operation in RangeCheck:
5 aload_0
//Get the elementData array:
6 getfield #12 <research/util/ArrayList.elementData>
//Load the index:
9 iload_1
//Load a reference to an element in the array:
10 aaload
//Return the reference to the calling method:
11 areturn

We tested get method in two different ways: accessing it via its interface List and via
its superclass AbstractList.
The get method above returns an object of type T. We wrote a method similar to get, but
returning a boolean, not an object:
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public boolean getEqual(int index) {
if (index >= size)

throw new IndexOutOfBoundsException("Index: " + index
+ ", Size: " + size);

return (elementData[index] == elementData[(index+1)%size]);
}

The method is set up in a way that prevents dead code elimination by comparing two
different elements on every call. The code of RangeCheck is inlined directly into the
method. In separate tests we observed that inlining RangeCheck by itself has the same
behavior as get above so this inlining does affect our results.
The method handles array access in a way that is similar to get: it performs bytecode
instructions getfield and aaload, just as in the bytecode for get above. The compar-
ison == compares object references (memory addresses) so it works the same regradless of
the type bound of ArrayList, i.e. it works the same in all versions of our program. The
key difference between getEqual and get is ireturn (returing a primitive type, i.e. a
boolean) in the former instead of areturn (retunring an object) in the latter. As we show
in the following sections, this creates a substantial difference in bytecode behavior.
We also tested standard ArrayList methods add and set. Due to a lack of space we
are not showing their code.
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Figure 2: Testing getmethod, interpreted mode in server JVM.

4.3 Tests in Interpreted Mode
In this section we discuss results of testing our eight versions of bound narrowing in a pure
interpreted JVM mode, i.e. with the JIT turned off. In this case the client and the server
modes of the JVM behave identically so we only show results for server. As explained on

15



Section 3.4, we can see a distinct grouping based on the specialization of the program code.
The graphs in Figures 2 and 3 show the results of testing get and getEqual methods
(described in Section 4.2), respectively.
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Figure 3: Testing getEqual method, interpreted mode in server JVM.

After all the eight class were compiled, the resulting bytecode for the methods were exactly
the same. However at the execution time the way in which some of the methods were
handled by the JVM were not the same. As shown in Figure 2, the O-group which does
not have a bound narrowing performs as well as the C-group which is fully specialized. In
either case when the method call is executed an Integer is returned and either the fully
specialized or not specialized tests are performed in the same manner by the JVM. In these
two groups the interface and the ArrayList have the same type bound.
In the case of the AL-group, which has a mixed type specialization, where the bounds of
ArrayList and List are mismatched (ArrayList bound is more specific than List
bound), we can see a drastic slow down. We argue that this slowdown is due to an implicit
typecheck being done by the JVM when an object is passed through a narrowed type bound.
In a test case when we access the ArrayList via its superclass AbstractList, rather
than an interface List, we observe a similar slowdown for the AL-group, compared to the
other two group. This is due to the same bound mismatch, even though the call is done in
the bytecode as invokevirtual. Also the same behavior is observed for methods add and
set, since they both take an object as a parameter.
However, the above grouping does not happen when we call the method getEqual, see
Figure 3. Since this method returns a boolean which is a primitive type, the implicit type
check done by the JVM is not longer needed. This lack of implicit check is evident as we
observe no significant difference in runtime for all our tests.
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Figure 4: Testing get method, no inlining in server JVM.

4.4 Tests with Inlining Turned Off
In this section we look at how our test cases behave while running with the JIT, but with
the inlining optimization disabled. The graph in Figure 4 shows the runtime behavior of
the method get. Note that the absolute running times for this test are not comparable with
the interpreted runs because we are performing 40000 iterations of the outer loop in our
testing code instead of 5000 in the interpreted mode runs.
This data shows a similar pattern as the previous interpreted mode. The same patterns
with different runtimes are also observed for add and set test and for accessing get via
AbstractList. This pattern is present in both client and server modes of the JVM,
although with different absolute times. We hypothesize that the typecheck in AL-group
performed in the interpreted runs cannot be eliminated when the inlining is turned off.

4.5 Tests in Regular Mode
In this section we look at three type of test results.

• get method: Figure 5 shows a normalization pattern in all the test runs: all ver-
sions of the code run in about the same time. Note that the ranges of times are
very small in each of these runs: 17.4-17.5 sec in server and 26.34-26.38 in client.
Although type check in the AL-group tests must be performed prior to the actual
call getting inlined, the inlining process renders the type check unnecessary once the
compilation threshold is reached. This is observed in both server and client JVMs.

• add method: Figure 6 shows the add method tests. This new runtime grouping
shows ALS performing closer to the C-group, and the O-group performing closer to
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Figure 5: Testing get method, normal mode in client and server JVM.
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Figure 6: Testing add and set methods, normal modes in server JVM.

AL-group. Once inlining is turned on, the more specialized the hierarchy, the better
the program tends to behave. However this does not explain the behavior of S and
some observed runs in the client mode.

• set method: The same argument can be apply to the set method, which has the
added complexity of not only setting an element at a given index, but also returning
the old object at that index.

5 Conclusion and Future Work
We discovered that narrowing the type bound leads to noticeable runtime inefficiencies in
interpreted mode (i.e. with the JIT turned off) in cases when an object is passed to or
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from a generic container. This inefficiency does not take place for methods that take and
return only primitive type. This led us to conclude that the slowdown is due to a typecheck
performed by the JVM to make sure that only objects of the correct type are passed to and
from the methods.
We also observed that in the absence of inlining the JVM does not eliminate the type-
check overhead entirely. When inlining is turned on, in some methods (such as get) the
overhead is eliminated completely, but for other methods (such as add) it is not offset by
dynamic optimizations. While there is a clear connection between this behavior and pa-
rameters passed to the method, more research is needed to pinpoint and explain the exact
dependency. We also plan to use a JVM called Jikes for testing purposes and compare the
results.
One should note that, although our test cases stem from the study of generic types spe-
cialization, the results are applicable to any software design pattern that uses type bound
narrowing.
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