The Role of Method Call Optimizations in the
Efficiency of Java Generics

Jeffrey D. Lindblom, Seth Sorensen, and Elena Machkasova
Computer Science Discipline
University of Minnesota Morris

Morris, MN 56267
lindb310@umn.edu, soren585 @umn.edu, elenam @umn.edu

Abstract

The Java Virtual Machine (JVM) is the run-time environment of Java programs. It is an
interpreter of bytecode, a language into which Java programs are initially compiled. Mod-
ern JVMs are packaged with the Just In Time (JIT) compiler, a compiler which performs a
series of run-time optimizations as the program is being executed.

Some of these optimizations attempt to reduce the overhead of Java method calls. One of
these optimizations is known as devirtualization. Devirtualization works to eliminate the
overhead of virtual calls caused by the run-time look-up of target method calls in a class
hierarchy. It does so by pointing the method call directly to its target method. Another of
these optimizations is method inlining. Inlining goes one step further than devirtualization,
and eliminates the method call entirely, replacing it with the methods code itself.

Our research focuses upon the efficiency of Java generic types, which are constructs that
allow a programmer to define collections parametrized over a type T. When such a collec-
tion is instantiated, this type parameter T is replaced by a concrete type such as String or
Integer. Making use of generic types may improve the run time of a Java program, but in
other similarly structured cases a programs run time may suffer.

With relation to Java generics, we present observations on the optimizations of devirtual-
ization and inlining and their corresponding effects on the run time. These observations
are obtained using a variety of methods: profilers, run-time records of JVM operations,
and direct timings of the Java programs. Given that the JVM is an extremely complex and
fairly under-documented software system and most profilers provide a very limited amount
of data it can be difficult to describe optimizations of the JVM with any amount of detail
using these tools. We have however managed to detect specific instances of devirtualization
and inlining taking place during the execution of Java programs.

1 Introduction

In its early days the Java programming language got a reputation of being slow. This is
because Java code is compiled to bytecode which is then interpreted by the Java Virtual
Machine (JVM), and interpretation is a slow process. However, soon after Java release a
significant research effort was put into incorporating run-time program optimizations into
JVMs.

A modern JVM is a multi-threaded environment that continuously performs a large number
of tasks. It creates and maintains a sophisticated internal code representation. At the same
time it profiles a Java program being executed to determine areas that would benefit the
most from optimizations and performs the optimizations. It selectively compiles bytecode
to machine code and reloads methods on the fly, replacing them by their faster versions.
All of these operations are performed in the span of milliseconds. In short, JVMs are some
of the most complex software systems currently in wide use.

JVMs are constantly modified to produce the fastest code for the newest architectures.
It is not surprising that predicting, or even understanding, JVM optimizations is a very
challenging task. While there are tools that allow one to monitor and control the JVM,
these tools are not necessarily kept up to date with the increasingly vast array of JVM
features. Their accuracy may also be affected by the fact that they run concurrently with
the JVM itself, possibly creating an “observer effect” by modifying the running times and
the patterns of the JVM [9].

Our work stems from studying the performance of Java generic types, with a particular
focus on an inheritance pattern which we refer to as bound narrowing [15]. This pattern
may lead to certain method call optimizations. Our goal is to determine whether these
optimizations actually take place. In this effort, we evaluate relative usefulness of tools
that provide run-time information about a program. We have successfully detected certain
types of method call optimizations by obtaining consistent results from several observation
approaches.

2 Background

2.1 Java Execution Model

Unlike statically compiled languages, in which a program is compiled into machine code
and optimized in the same step, the Java programming language has a two-phase compi-
lation model. First, a Java program is compiled into an internal representation known as
bytecode. This bytecode is then interpreted, optimized, and executed by the JVM. In our
research, the JVM we work with specifically is the Java HotSpot™ Virtual Machine' [8].

There are two modes of the HotSpot JVM: client and server. Our research focuses on the server mode
since it typically produces faster code.

HotSpot, like most modern JVMs, comes equipped with the Just-in-Time compiler (JIT).
As the name suggests, the JIT works in parallel with the JVM to manipulate and compile
bytecode into other internal representations ‘on-the-fly’. While bytecode is interpretable
by the JVM on its own, efficiencies in speed can be obtained by using a different internal
representation of the same instruction set. These Java program code transformations belong
to a set of code modifications we call JIT optimizations. The JVM, through its complex
analysis of the Java program code, schedules JIT optimizations throughout the execution
of the Java program [14] [1].

2.2 JIT Optimizations

JIT optimizations are queued and subsequently executed as tasks by threads. Threads are
spawned processes that can run in parallel to other processes. This queue processing struc-
ture allows for the JVM to perform many complex operations concurrently. From what we
have observed, how the JIT optimization tasks are delegated to threads can have varying
impacts on a Java program’s overall run-time. The JIT optimizations we focus on pri-
marily are those concerned with the devirtualization of method calls and method inlining,
explained below [1].

In the Java language there exist class hierarchies of varying levels of abstraction. For exam-
ple one might define a variable of the class Animal that references an object of its subclass
Fish. Now assume we would like to call a method swim on this variable. Initially it re-
mains unclear whether we should call the method under Animal or the method under its
subclass Fish. The JVM solves this problem using a virtual method call [6].

A virtual method call is a process that looks up and executes the target method for a refer-
enced object. In terms of the example above, the virtual method call of swim on our vari-
able of class Animal would traverse the Animal class hierarchy until the target swim
method of subclass Fish was located. Correspondingly, this is the method that is called.

While virtual method call look-up is a necessary process, it can be rather inefficient. In
some cases, JIT can optimize for this inefficiency. When a virtual method call performs
look-up to the same subclass consistently and repeatedly, a relationship between the virtual
method call and that subclass is established. When the JVM recognizes such a relationship,
the JIT can optimize the virtual method call by compiling it to jump directly to the subclass
method. This process is called method devirtualization, and it eliminates the method look-
up procedure entirely.

Devirtualization presents a vulnerability however, as there is no guarantee that the object
we assign our variable to will remain consistent. Take, for example, our Animal variable.
Let us say that its swim method call was devirtualized to jump to the swim method under
the subclass Fish. Now, if we reassign our Animal variable to the subclass Monkey, the
swim method will incorrectly jump to the swim method for i sh, presenting a class mis-
match of methods. To prevent this from happening, a safeguard trigger is placed before the
devirtualized method call. This trigger forces a recompilation of the devirtualized method
call back to a virtual method call if we encounter a class mismatch [7].

2

Method inlining is the elimination of a method call altogether. For this process the JIT takes
a given method call and replaces that call with the code it represents. Inlining removes
the overhead of a method call and creates opportunities for other optimizations since a
consecutive code sequence with no jumps to other parts of the program is easier to optimize.
Constraints can be defined within the JVM on how much code can be inlined into any given
method, and these restrictions can significantly impact the run-times of the Java programs.
As with devirtualization, inlining can be reversed if the method being called has changed.

The JIT optimizations of devirtualization and inlining generally require a method “warm
up” before their utilization. This warm up is measured in the number of calls to a given
method. Once a certain method call threshold is reached, the method is considered /ot and
is scheduled for an optimization. In the HotSpot Server JIT, the method call threshold for
becoming hot is 10000 calls, though both devirtualization and inlining have been known to
occur prior to reaching this threshold in some cases [13] [8].

2.3 Internal Java Code Representation

The HotSpot Server JIT starts with the internal code representation of bytecode. Bytecode,
as previously mentioned, is compiled Java code that allows for interpretation by the JVM.
As the bytecode is interpreted and analyzed, it may be compiled into different internal code
representations by the JIT for optimal run-time. One of these representations is the native
code, which is the machine code compiled specific to the operating system on which the
Java program is being run. Another representation is the Intermediate Representation (IR),
which is used to represent the program as it is being executed in the JVM. The IR is based
upon the graph of an expressive form called Static Single Assignment (SSA).

SSA is a standard that constrains variables to exactly one assignment. That is, if you were
to assign the integer 5 or the result of an operation 3+2 to an int variable X, X can not be
used to store any further values. The advantage this form provides for IR is that it allows for
a construction of a slightly modified version of a Value Dependence Graph called the Sea
of Nodes. The Sea of Nodes structure is based upon the idea that nodes constitute values,
such as the constant 5. These nodes are graphed in terms of their dependency to each other,
which is why SSA is important. Without SSA, nodes could exchange their values in-place,
and that would make the graph algorithmically complex and inefficient to maintain.

The Sea of Nodes construct provides several benefits: global constants are recognizable as
single nodes with a constant value, dead (unusable) code is easily isolated as nodes that
no reachable part of the graph depends on, and future nodes can be optimally inserted into
the structure [3, 10]. Sea of Nodes structure can consist of a large number of nodes for
even a small program because separate nodes are generated for all intermediate results in a
program.

3 Java Generics and Bound Narrowing

When programming in Java it is often useful to have a generic data structure which can
utilize any one type of object. In such a case you can then specify the class of object the
data structure uses in the declaration of each individual instance. Generic types are a feature
in Java that allow just that. For example, when you want to create two ArrayLists, one
of Integers, and one of St rings, Java allows you to make two instances of the same
class, ArrayList<T>, that can use all of the methods defined in ArrayList<T>, but
are restricted to storing objects of type Integer and St ring respectively. In this case

public Class ArrayList<T> { // class declaration ...}

is the generic type and T is the formal type parameter. In the actual declaration of your
instance of ArrayList<T> you would replace T with the actual type parameter which
in this example is either Integer or String:

ArrayList<Integer> intArraylList = new ArrayList<Integer>();
ArraylList<String> strArraylList = new ArrayList<String>();

Each of these ArrayLists is restricted to storing objects of the actual type parameter,
Integer and St ring respectively. If an attempt is made to add an object of a type other
than that of the actual type parameter then there is a compilation error.

Java’s implementation of generic types uses type erasure to ensure backwards compatibility
of generic types with previous versions of Java and increase the type safety of the program.
When a program using generic types is compiled, the JVM using type erasure removes all
type parameters from generic type declarations and inserts type casts in front of all objects
that are returned from the data structure. This ensures that each element of the generic type
is of the type given by the actual type parameter.

In the above example there is no restriction on the class you may use for the actual type
parameter, however it is possible to impose such a restriction in your own generic types.
Using type bounds you can, for example, create your own implementation of ArrayList
that restricts the actual type parameter to objects that implement Comparable interface:

public Class ComparableArrayList<T extends Comparable>

Now suppose you would like to create aclass ArrayListInteger thatextends ArrayList
but the parameter type is restricted to Integer. You can do so in a two different ways:

public class ArrayListInteger extends ArraylList<Integer>
public Class ArraylListInteger<T extends Integer>
extends ArrayList<T>

We refer to classes with more specific bounds than their superclass such as these as be-
ing bound narrowed. Bound narrowing allows for the creation of ArrayListInteger
methods that are specific to ArrayLists of Integers, and due to type erasure these
methods can assume that all elements in an instance of ArrayListInteger are of type
Integer. In previous research we had observed that implementing a class in such a way

can lead to an increase or decrease in run times, or have no effect at all when compared to
run times of a program that does not use generic types [2][12].

4 Code Examples and Testing Procedures

4.1 Test Code and Goals

Our examples use a copy of the class HashMap<K, V> in the Java Collections library. The
class provides the functionality of a hash table and is parameterized over two types: K for
keys and V for values. It implements an interface Map<K, V>, also generic in K and V.
Both K and V have the default Object bound. In our study we extended the HashMap
class to our own class Narrowed that narrows the type bounds for the key and the value
to Integer and St ring, respectively:

public class Narrowed extends HashMap<Integer, String>

Note that the narrowed class no longer has type parameters since the bounds are narrowed
to concrete types. The class overwrites several methods of HashMap. We added methods
to both classes to study effects of bound narrowing. We compared the runtimes to those of
the same class extension, except with the default Ob ject bound for K and V. We called
this class Generic:

public class Generic<K, V> extends HashMap<K, V>

The generic class has the type parameters K and V, just like the HashMap class from which
it inherits.

We create an instance of a Narrowed class that we refer to via its interface Map:
Map<Integer, String> map = new Narrowed();

Likewise we create an instance of a Generic class, also referred to via the interface:
Map<Integer, String> map = new Generic<Integer, String>();

In order to minimize memory management effects and prevent the program from running
garbage collection (which would interfere with our program timing geared towards mea-
suring inlining and devirtualization effects) we initialize our test hash tables with just four
elements and iterate over these elements in a large number of loops.

In both classes we test multiple calls to a method containsValue. The method is as
follows in Narrowed class. The method performs a linear search for a value in a table of
hash table entries which contains key/value pairs.

public boolean containsValue (String value) {
// some unimportant code removed

Entry[] tab = table;

for (int 1 = 0; i < tab.length; i++)
for (Entry e = tab[i]; e != null; e = e.next)
if (value.equals(e.value))
return true;
return false;

}
The method with the same name in Generic class is analogous, but with the signature
public boolean containsValue (V value)

where V is the type parameter which at run-time is erased to Object. In our tests we
compare the running times of a large number of calls to containsValue on the map
variable for the bound-narrowed class Narrowed and the fully generic class Generic.

Multiple factors may create differences in running times between the Narrowed and
Generic classes. Narrowed has more specific type information (the value parame-
ter is known to be St ring) which makes it easier for the JIT to inline or devirtualize
the equals method called on the parameter. This would make Narrowed faster. On
the other hand, bound narrowing in Narrowed leads to an extra type check: when the
method containsValue is called on map (the generic interface type), a run-time check
is needed to make sure that the value is indeed a St ring as required for the narrowed
form of the method which would lead to Generic class being faster. The JIT may com-
pensate for either delay by an optimization, and success or failure of certain optimizations
may in turn allow or prevent subsequent optimizations. Our project focuses on determining
whether either inlining or devirtualization takes place.

Our tests run in the HotSpot 1.6.16 JVM. This JVM was used because it is the only JVM
that we know of that manifests instability: the same program executed multiple times under
the same conditions has different run times. Section 6 shows that we were able to attribute
these time differences to success or failure of specific method call optimizations.

4.2 Inner Loop Method and On Stack Replacement (OSR)

A common way of measuring running time of a certain program feature (e.g. a method call)
is to run a very large number of loop iterations that perform that operation over and over to
get aggregate times that are precisely measurable. It is also important that the number of
method calls is significantly higher than the JVM warm-up threshold (see Section 2.2) so
the method gets optimized almost right away. Our tests follow this approach: we call the
method in question 100,000,000 times. This results in program running times on the order
of 10 sec. and a clear separation between times for different versions of the code. However,
instead of just putting the testing loop directly into main or a method it calls, we separate
out 10,000 iterations of the loop into a method that we call innerLoop that we then call
10,000 times (resulting in the same total number of method calls). The reason for this is to
prevent an on stack replacement explained below.

JIT optimizations are done on a method-by-method basis. When a method is compiled
or optimized in some other form, subsequent calls to the method will load its new code.
However, this approach would not allow optimization of a method that is called in the be-
ginning of the program and does not finish until the program’s end (e.g. main). Since this
method is constantly located on the program stack, there is no opportunity to replace its
next call with an optimized version. The JIT handles this situation via on stack replace-
ment, abbreviated as OSR: the method is replaced by its optimized version directly on the
program stack while the program is being executed [5]. However, the OSR optimization
works on fragments of the method code (such as main), and not on the entire method. This
approach can lead to optimizations that are less efficient than a whole-method optimization
would produce [4]. Our use of the innerLoop method guarantees that we observe full
optimized methods, and not their OSR version.

S Methodology

Xprof. The HotSpot JIT comes equipped with a profiler, called XProf. A useful feature of
XProf is that it is embedded in the JVM. This allows XProf to have a fairly low profiler
overhead [11]. When we ran our code with XProf, we found that run times of all program
runs increased by a constant factor. This indicated that our observed program run-time pat-
terns were identical to those observed without XProf enabled. This type of observer effect
is highly preferable to that which results from running other profilers, such as HProf, with
your Java program. The difference with HProf running is that not only do the program run
times change, but the resulting patterns observed in run times are significantly altered [9].

Xprof allows us to detect inlining by measuring the amount of time a method is positioned
on a program stack: if a method does not appear on the stack then it is likely to have been
inlined. One has to be careful, however, because profilers may only monitor certain types
of code representation. Among other useful information produced by Xprof is the time
that the JIT spends in various modes, such as compiling. It is important to note that XProf
operates by sampling run-time data rather than an aggregate analysis. This is a reason why
XProf is able to maintain a low overhead, but it is also its limitation [11].

JVM Compilation Logs. The HotSpot JIT allows the user to specify an optional start-
up flag —-XX:+LogCompilation, which, when present, instructs the JVM to output a
structured XML log file detailing compilation-related activity during the execution of a
Java program in the HotSpot JVM?. These compilation logs provide us with a great deal
of information relating to when and how the JIT enacts optimizations to Java code. Node
counts in the Sea of Nodes internal representation, method call optimizations, and other
useful information are all provided within the logs in a chronological® and mostly times-
tamped fashion. Even so, while LogCompilation is indeed a great resource it is not all
encompassing. Relying upon it as a reference primarily can be dangerous, as we have en-

2 Additionally the flag -XX : +UnlockDiagnost icVMOpt ions needs to be set to enable logging
3Chronological as per thread.

countered, because the true causes of observed run times and patterns can be absent from
these logs.

While compilation logs have useful information, they often also contain a great deal of data
irrelevant to the optimizations we would like to track. To help filter the useful data out into
a human readable format, as seen in figure 4, we use XSLT files. XSLT files allow us to
convert XML logs to HTML, isolating the items of interest in a preferable fashion. For
example, if we were aiming to pull out all the optimization tasks that inlined methods, we
could select only tasks that have non-zero inlined bytes. We also have control over what
attributes of the items we can see and can highlight important information by color-coding.

Disabling Inlining A HotSpot flag we often work with in our research is -XX:-Inline,
which sets the JIT to not inline any methods within the Java code. The advantage of using
this flag is the ability to compare run-time and JIT optimization differences between inlined
and non-inlined runs.

8.5

8.0

CPU Time (sec.)

7.5

7.0

T T
1Narrowed 2Generic

Figure 1: Test Results (Regular Run)

6 Observations and Results

6.1 Instability

The cornerstone of our research is the observed instability of run times for identical Java
program test runs, see the graph in figure 1. To isolate the causes of this instability, we
attempt to keep our testing environment as consistent as possible. In this effort we isolate
our JVM process to only one CPU, and restart the JVM for each and every run.

In our observations we have been able to distinguish two types of instability:

8

10.0
|

9.5

CPU Time (sec.)

9.0

8.5

T T
1Narrowed 2Generic

Figure 2: Test Results (No Inline Run)

1. Instability that correlates with differing optimization and compilation patterns.

2. Instability that does not appear to correlate with differing optimization and compila-
tion patterns.

The run times that make up these instability graphs are almost always bi-modal, i.e. there
exists a clear gap between the slower run times and the faster run times. We will refer to
these two types of test runs as slow runs and fast runs respectively.

In figure 1 we have split the graph into two test run-time sets: the left set is the class
Narrowed with a narrowed bound and the right set is the class Generic with a generic
(Object) bound (see Section 4). The Narrowed results are bi-modal: five of the tests
run in 6.8 sec. or close (fast runs), and the other five are at 8.1 sec. or slightly higher (slow
runs). The Generic runs have less variation as the fastest are on the order of 7.8 sec. and
the slowest are 8.8 sec. As we show later, the left set exhibits the first type of instability,
and the right set exhibits the second kind. We also observe that the fast runs of Narrowed
are significantly faster than Generic.

The set of results in figure 2 demonstrates test runs in which we have disabled inlining
through the use of the -XX:-Inline flag. Note that the running times increased to
between 8.5 sec. and 10 sec. in the absence of inlining. These results are useful because
we can observe the effects of devirtualization in the absence of inlining, and observe that
devirtualization alone is sufficient to make Narrowed run faster. Just like in the runs with
inlining enabled, the Narrowed tests are faster than Generic. Both the left and the right
set demonstrate a bi-modal distribution, but just like Generic runs in figure 1, differences
in times do not seem to correspond to factors detectable by the tools that we use.

In Thread 1
» Task: compile id = 2, method = Marrowed containsValue (Ljiava/lang/Object;1Z, bytes = 9, count =
5000, iicount = 10000, stamp = 0,112,

Fhase: name = parse, nodes = &, stamp = L1132,
Phase: name = optimizer, nodes = 403, stamp = 0,113,
Phase: name = matcher, nodes = 815, stamp = 0116
Phase: name = regalloc, nodes = 446, stamp = 0.117,
Phase: name = output, nodes = 775, stamp = 0,134,

Task done: success = 1, nmsize = 1040, count = 9901, inlined bytes = 152, stamp = 0.134,
In Thread 2
Task: compile id = 2, method = TestMarrowed innerLoop (ILMap;[Ljava/lang/String;Z) 2, bytes =

24, count = 2, backedge count = 5000, jicount = 2, stamp = 0,121,

Phase: name = parse, nodes = 3, stamp = L1121,
Fhase: name = optimizer, nodes = 496, stamp = 0,123,
Phase: name = matcher, nodes = 8408, stamp = 0126,
Fhase: name = regalloc, nodas = 524, stamp = 0.126,
Phase: name = output, nodes = 1042, skamp = 0,158,

Task done: success = 1, nmsize = 1456, count = 10000, backedge count = 52342, inlined hytes =
152, stamp = 0,159,

Figure 3: XSLT Filtered Compilation Log for Fast Narrowed Test Run

6.2 Compilation Logs and Effects of Threading

In this section we discuss the observed differences in logs between the fast and slow
Narrowed runs. These are runs in which differences in run times correlate to differ-
ences in logs, i.e. they have the first kind of instability. One of the more useful ways of
comparing the differences between slow and fast runs is by comparing their compilation
logs side-by-side.

Observe figures 3 and 4. Here we have pulled out two JIT optimization tasks from compi-
lation logs of two Narrowed test runs and filtered them using an XSLT file. Logs show
several phases of optimization, including their corresponding counts of participating nodes
in the Sea of Nodes representation of the code. As can be seen, the node counts differ
for the method = Narrowed containsValue task (we show the common part of
the two logs in green and the different parts in red). In our research, we have consistently
observed these two different node count patterns to differentiate slow test runs from fast
test runs. Interestingly, it has also been consistently observed that the presence of the first
thread overlapping with the second thread correlates with faster test runs.

Yet another feature that distinguishes between fast and slow runs is present in the task that
optimizes innerLoop method. Figures 6 and 7 show a fragment of the logs (formatted
with a different XSLT file) for this task. In the fast run inlining of containsValue is
successful, but in the slow run it fails with a message “already inlined into a big method”.
Note that the JIT makes several attempts to inline the method throughout its running time so
there are other failed attempt at inlining in both the fast and the slow runs, making detection
of inlining non-trivial.

There is also a correlation between fast runs and more time being spent in the register
allocation (regalloc) phase. Figure 5 shows the complete (not filtered by XSLT) re-

10

In Thread 1
» Task: compile id = 2, method = Marrowed containsValue (Ljava/Jlang/Object;)Z, bytes = 9, count =
5000, ficount = 10000, stamp = 0,112,

Fhase: name
Fhase: name
Fhase: name
Fhase: name
Fhase: name

parse, nodes = 3, stamp = 0,112,
optimizer, nodes = 403, stamp = 0.113,
matcher, nodes = B15, stamp = 0,116,
regalloc, nodes = 446, stamp = 0.117,
output, nodes = 775, stamp = 00124

Task done: success = 1, nmsize = 1040, count = 5000, inlined bytes = 152, stamp = 0.124,
= Task: compile id = 3, method = TestMarrowed innerLoop (ILMap;[Ljavadang/String; Z) 7, bytes =
24, count = 10000, backedge count = 52806, licount = 5, stamp = 0,121,

Fhase: name
Fhasea: name
Fhase: name
Fhase: name
Fhase: name

parse, nodes = 3, stamp = 0,132,
optimizer, nodas = 156, stamp = 0132,
matcher, nades = 177, stamp = 0,123,
regalloc, nodes = 120, stamp = 0133,
output, nodes = 170, stamp = 0,134,

Task done; success = 1, nmsize = 316, count = 10000, backedge count = 5386, stamp = 0,134,

Figure 4: XSLT Filtered Compilation Log for Slow Narrowed Test Run

Fast Run Slow Run

+=phase name="pars&" nodes="3" slamp="0121"> +=phase name="parsz" nodes="3" slamp="0132">
+<phase name="optimizer® nodes="490" stamp="0123">|+<phass name="optimizer’ nodes="150" stamp="(131">
+=phase name="mnalcher” nodes="249" stamp="0 126> |+ <phase name="malcher” nodes="177" stamp="0133"=
~«phase name="regaloc” nodes="521" stamp="0.130"> |- <phase name="regaloc” nodes="120" stamp="0133"=

=regalloc attempts="2" sncopss="] "= wregalloc attempts="0" success="]%/>=

=phase done nodes="1040" slamp="0.158"/= =phase done nodes="170" stamp="0.134"=

</phase> =/phase=

Figure 5: Raw Compilation Log: regalloc phase comparison of Narrowed Test Runs

galloc phase. Notice that the fast run corresponds to more attempts at register allocation
and significantly more nodes involved. Fast runs also have a longer time spent in compi-
lation phase in the profiling (xprof) logs. Our hypothesis is that fast runs spend more time
on register allocation, leading to more efficient use of registers, and thus to faster runs. It
also seems plausible that successful inlining provides a larger code block for the register
allocation algorithm to work with, ultimately enabling a faster program. It is also worth
noting that unstable Generic runs as well as those in which we disabled inlining have the
same number of nodes in the internal representation at the same phases of the optimization,
regardless of whether the runs are fast or slow. This indicates that the instability of these
runs is of the second kind, as mentioned in Section 6.1, and the tools that we are currently
using do not provide any insight into the causes of these time fluctuations.

6.3 XProf and Inlining

One of the most interesting test run observations we have been able to extract using XProf
is the percentages of compiled code and interpreted code for class methods positioned on
the JVM execution stack, i.e. being executed by the JVM. We show examples of this data
for a fast and a slow run in figures 8 and 9 respectively. The slow run spends 77% time
running the containsValue method (compiled to native code), whereas the fast run

11

Task: compile id = 3 method = TestMarrowed innerLoop (ILMap;[Ljava/lang/String; 212, bytes =
24, count = 2, backedge count = 5000, iicount = 2, stamp = 0121,

Method: id = G604, name = innerLoop, bytes = A4, iicount = 2,

Method: id = G009, name = containsValue, bytes = 0, iicount = 1,

Call: method = 609, count = G701, prof factor = 1, virtual = 1, inline = 1, receiver = 607,
receiver count = G701,

Method: id = 610, name = containsValue, bytes = 9, jicount = 10000,

Call: methad = 610, count = G701, prof factor = 1, inline = 1,

Method: id = 612, name = containsValue, bytes = G4, compile id = 1, compiler = C2, level = 2,
ilcount = 2501,

Call: method = 612, count = G701, prof factor = 0.G701, inline = 1,

Method: id = 621, namea = equals, bytes = BE, iicount = G612,

Call: method = 621, count = 4189, prof factor = 1, inline = 1,

Task done: success = 1, nmsize = 14505, count = 10000, backedge count = 5242, inlined bytes =
152, stamp = 0,159,

Figure 6: XSLT Filtered Compilation Log for Fast Narrowed Test Run

Task: compile id = 3 method = TestMarrowed innerLoop (ILMap;[Ljavadlang/String; 212, bytes =
24, count = 10000, hackedge count = 5386, iicount = 5, stamp = 0,121,

Method: id = 604, name = innerLoop, bytes = 34, iicount = 5,

Method: id = 609, name = containsValue, bytes = 0, ficount = 1,

Call: method = 609, count = 42294 prof factor = 1, virtual = 1, inline = 1, receiver = G607,
receiver count = 42304,

Method: id = 610, name = containsValue, bytes = 9, compile id = 2, compiler = C2, level = 2,
iicount = 10000,

Call: method = 610, count = 42394, prof factor = 1, inline = 1, iﬂiﬁg;ﬁﬁ_rgﬂﬁnn? ii.itjgg'ﬂg
compiled inte a big method,

Task done: success = 1, nmsize = 216, count = 10000, backedge count = HABG, stamp = 00134,

Figure 7: XSLT Filtered Compilation Log for Slow Narrowed Test Run

only spends 0.1% of its time in this method (presumably before the method gets inlined).

We also observe that equals does not appear in any of the Xprof logs (including the
Generic runs) which points to a successful inlining of equals in all cases. Strangely,
equals is also absent in the runs in which inlining is disabled. The best explanation we
can come up with is that the equals method is stored in a different representation and
may not be detectable by XProf or may be unaffected by -XX: -Inline flag. We do not,
however, have a way of checking these hypotheses at the present moment.

6.4 Interpretation of Observations

Based on our observations we conclude that fast runs of Narrowed successfully inline
the containsValue method, while slow runs of Narrowedand all runs of Generic
fail to inline it. We also observe that fast Narrowed runs have a more efficient register
allocation phase, even though it takes longer than that of slow runs. The efficiency of
this phase is possibly enabled through successful inlining, as observed correlations would
suggest, though we have yet to confirm this hypothesis. Based on the runs with inlining
disabled we conclude that devirtualization of containsValue is by itself sufficient to

12

Compiled + native Method

99.1% 672 + 0 TestNarrowed.innerLoop

0.1% 1+ 0 Narrowed.containsValue

99.3% 673 + 0 Total compiled

Figure 8: XProf Output for Fast Narrowed Test Run
Compiled + native Method

77.0% 676 + 0 Narrowed.containsValue
21.8% 191 + 0 TestNarrowed.innerLoop

98.7% 867 + 0 Total compiled

Figure 9: XProf Output for Slow Narrowed Test Run

make Narrowed runs faster than Generic runs. We also conjecture that inlining of
equals takes place in all runs and seems to be unaffected by the ~XX: -Inline flag.

7 Conclusions and Future Work

Our research goal was to determine whether certain methods were inlined and/or devir-
tualized in our examples, focusing particularly with those involving bound narrowing of
Java generics. Throughout this research, we have explored a variety of tools for observing
Java program behavior. Despite their unreliability and a lack of precise documentation for
each of these tools individually, we were able to combine their functionality to successfully
detect inlining and, with a somewhat lesser degree of confidence, devirtualization.

In our framework we were able to take advantage of fast and slow runs of identical Java
programs. The methodology that we developed and confirmed using these unstable pro-
grams can also be extended to a wider range of programs, leading to a better understanding
of the effects of bound narrowing and generic hierarchy in general.

Our future work includes applying the methodology to more generic examples as to explain
other run-time behavior patterns associated with bound narrowing. This in turn would help
software developers to choose efficient generics inheritance patterns for their applications.
Another promising research direction is to extend our methodology to more modern JVMs,
such as the most recent update of Java SE 6 and Java SE 7.

References

[1] ARNOLD, M., FINK, S., GROVE, D., HIND, M., AND SWEENEY, P. F. Adaptive
optimization in the jalapeno jvm. In Proceedings of the 15th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applications (New

York, NY, USA, 2000), OOPSLA *00, ACM, pp. 47-65.
[2] BLOCH, J. Effective Java (Second Edition). Addison-Wesley, 2008.

13

[3] CLICK, C., AND COOPER, K. D. Combining analyses, combining optimizations.
ACM Trans. Program. Lang. Syst. 17,2 (Mar. 1995), 181-196.

[4] CLIFF CLICK. What the heck is OSR and why is it bad (or good)? Blog entry,
November 11 2011.

[5] FINK, S. J., AND QIAN, F. Design, implementation and evaluation of adaptive re-
compilation with on-stack replacement. In Proceedings of the international sympo-
sium on Code generation and optimization: feedback-directed and runtime optimiza-
tion (Washington, DC, USA, 2003), CGO ’03, IEEE Computer Society, pp. 241-252.

[6] GOSLING, J., JOoY, B., AND STEELE, G. L. The Java Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1996.

[7] IsHIZAKI, K., KAWAHITO, M., YASUE, T., KOMATSU, H., AND NAKATANI, T. A
study of devirtualization techniques for a Java Just-In-Time compiler. In OOPSLA
'00: Proceedings of the 15th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications (New York, NY, USA, 2000), ACM
Press, pp. 294-310.

[8] LINDHOLM, T., AND YELLIN, F. The Java(TM) Virtual Machine Specification (2nd
Edition). Prentice Hall PTR, April 1999.

[9] MACHKASOVA, E., ARHELGER, K., AND TRINCIANTE, F. The observer effect of
profiling on dynamic Java optimizations. In OOPSLA Companion (2009), pp. 757-

758.

[10] MASON CHANG. Combining analyses, combining optimizations - sum-
mary. http://www.masonchang.com/blog/2010/8/9/sea-of-nodes-compilation-
approach.html.

[11] ORACLE LABS. Profiling. http://wikis.oracle.com/display/MaxineVM/Profiling.

[12] SioBLOM, I., SNYDER, T. S., AND MACHKASOVA, E. Can you trust your JVM
diagnostic tools? In MICS 2011 (2011), pp. 1-15.

[13] SUN DEVELOPER NETWORK. The Java HotSpot performance engine architecture.
Sun Microsystem (2007).

[14] SUN DEVELOPER NETWORK. The Java HotSpot™server VM. Sun Microsystem
(2008).

[15] TRINCIANTE, F., SJOBLOM, I., AND MACHKASOVA, E. Choosing efficient inheri-
tance patterns for Java generics. In MICS 2010 (2010), pp. 1-19.

14

