
Developing Beginner-Friendly User Interactions for
the Clojure Programming Language

Henry Fellows, Aaron Lemmon, Max Magnuson,
Emma Sax, Paul Schliep, and Elena Machkasova

Computer Science Discipline
University of Minnesota Morris

Morris, MN 56267
fello056@morris.umn.edu, lemmo031@morris.umn.edu, magnu401@morris.umn.edu,

saxxx027@morris.umn.edu, schli202@morris.umn.edu, elenam@morris.umn.edu

Abstract

Clojure is a newer functional programming language in the Lisp family of languages that
runs on the Java Virtual Machine (JVM). It is structured to use immutable data types and a
rich collection of predefined data structures (lists, vectors, hash maps, etc.) which makes it
a promising candidate for an introductory Computer Science (CS) class. However, Clojure
presents significant challenges to introductory level students. The primary challenge for
novice programmers is the confusing error messages that originate in the underlying Java
system. Our work is a part of the ClojurEd project which aims to use Clojure to teach an
introductory CS course. The goal is to create a programming environment that provides
introductory students with understandable error messages and usable project management
tools. We discuss our accomplishments, current work in progress, and future directions.



1 Introduction and Background

Felleisen et al [2] have made an excellent case for using a Lisp as a programming language
in an introductory CS class: the first language new programmers will use. Lisp offers a
simple syntax and introduces students to modularity, abstraction, and data-driven program
design while developing good programming practices by being explicit about program de-
sign principles. Essential concepts taught in such an introductory class have been shown
effective as a strong foundation for students to build upon in later classes that introduce
imperative features and the object-oriented paradigm [1].

Clojure is a relatively new language in the Lisp family that is rapidly gaining popularity
in industry and in the open source community. Clojure provides a functional easy-to-use
approach to developing robust multi-threaded programs.

Clojure offers a variety of built-in datatypes and functions that, when introduced rigor-
ously and systematically in an introductory CS class, would allow students to practice
data-focused program development. The abundance of open source libraries and projects
allow students to continue development in Clojure after finishing the introductory course,
both for their own purposes (such as data processing for other courses) and as contributions
to projects of others.

This paper describes our work in progress in making Clojure and its environment usable
for introductory level students. Our efforts include transforming Clojure error messages
into more beginner-friendly ones and developing tools that would allow students to seam-
lessly run their program code integrated with our modifications without having to deal with
Clojure tools that require more advanced knowledge.

1.1 Overview of Clojure

Clojure, developed in 2007 by Rich Hickey [4], is a dynamic, functional programming lan-
guage in the Lisp family. Dynamic typing means that Clojure does not associate types with
variables, but rather with values that they contain. When a type of a value is inconsistent
with one expected in a given context, a runtime error occurs. Functional means that Clo-
jure functions are first-class values that can be passed as arguments and returned as values.
Clojure utilizes the Java Virtual Machine (JVM) as a runtime environment. Clojure com-
piles into Java bytecode and runs on the JVM, which abstracts over the specifics of the
hardware. This setup offers easy access to Java frameworks. The Clojure read-eval-print
loop (REPL) is another easy way to interact with Clojure. A REPL is an interactive shell
program that takes single expressions, evaluates them, and returns the result to the user.
The REPL allows users to see immediate results and respond easily and quickly. For any
programmer, the use of the REPL is highly advised and can make programming in Clojure
much simpler. Use of the REPL allows users to break down their code, test specific pieces,
and experiment with new functions and uses [5].

Because Clojure is a functional language, it puts strong emphasis on immutable data types.

1



An immutable data type means data cannot be changed. When using Clojure, in order to
change a data item, an entirely new data item must be made. Immutable data types help
prevent side effects in programs. A side effect is when a function alters memory outside
of its scope. Side effects can make debugging or resolving errors more difficult. This is
because when a function interacts with other parts of a program, when it is not supposed to,
any issues in the code can propagate throughout the program. The reduction of side effects
makes problems with the code are easier to find and fix. Because of this, immutable data
types are practical for novice programmers.

Clojure, like other Lisp languages, uses prefix notation. This means that function calls use
parenthesis, followed by the function name, and then any parameters:

(<function-name> <argument 1> <argument 2>)

An example of this can be seen through addition, which is a built-in function, unlike tradi-
tional languages where + is an operation:

(+ 5 5)
-> 10

Note that -> indicates the result of computations in the Clojure interpreter.

Clojure also has offers accessibility to Java functions and Java interoperability. This means
that any Java method can be called just like normal Clojure functions.

Clojure users can also define functions and variables. Using the keyword def, we can
define variables:

(def mystring "Hello World")
mystring
-> "Hello World"

In the above example, we define a variable to hold the string to be "Hello World". This
way, whenever we reference mystring, the string we bound to the variable name will be
returned. We can also use defn to define functions:

(defn increment-number [number] (+ number 1))
(increment-number 2)
-> 3

In this example, we defined a function that takes a number and returns that number incre-
mented by 1. In any function, the function name is the word after the defn, the pieces
in the square brackets after the function name indicate the function’s parameters, and what
follows is the body, which is the expression returned by the function.

Now let us say that we have a program where we want to use a function, but only once.
This means that we do not necessarily need to define it with a name because Clojure sup-
ports anonymous functions. Anonymous functions allow programmers to quickly define
functions in place when needed. However, since these functions are not stored, the pro-
gram would not be able to use them more than once. The following example is of the same

2



increment-number function as above, but implemented anonymously. The map function
takes in a function and a collection as arguments, and applies the function to the collection:

(map (fn [number] (+ number 1)) [0 1 2 3])
-> (1 2 3 4)

Clojure also has a variety of different types of data structures, also referred to as collections.
All of Clojure’s collections are immutable, which means that the data within the structures
cannot be modified. The different types of structures Clojure uses are lists (denoted by ()),
sets (denoted by #{}), vectors (denoted by []), and hashmaps (denoted by {}). The first
three types of data structures mentioned can contain any number of values of any data type.

(1 2 "foo" :a 9 "bar")

However, hashmaps are unique in the fact that it is a collection of key-value pairs:

{key value, key value, key value}

Hashmaps commonly use keywords. Keywords are simple names that have a colon in front.
An example of a hashmap using keywords follows:

{:a 1, :b 2, :c 3}

The keywords in the above hashmap are: :a, :b, and :c. Keywords, such as the ones
above, are often used as keys within hashmaps. The value is the second piece of a key-
value pair, and each value is bound to a key. In the above example, :a is bound to 1, :b is
bound to 2, and :c is bound to 3.

Just like all other values, data structures can also be bound to a variable name:

(def myhashmap {:a 1 :b 2 :c 3})
myhashmap
-> {:a 1, :b 2, :c 3}

Laziness is another common feature of Clojure. Laziness is when the evaluation of an
expression is postponed until the return value is needed. An example is the Fibonacci
sequence. It would be impossible to store all of the infinite numbers in the Fibonacci
sequence. By making a lazy function, Clojure can evaluate only as much of the Fibonacci
sequence as necessary. The next example illustrating laziness uses the functions take
and range. take takes the first n elements of a collection, both of which are given as
arguments. range returns an infinite sequence of non-negative integers, beginning at 0:

(take 10 (range))
-> (0 1 2 3 4 5 6 7 8 9)

Another common example of laziness are if statements:

(if (< number 10) (+ number 1) (- number 1))

In the above example, the (+ number 1) or (- number 1) only evaluates depending
on whether the (< number 10) evaluates to true or false.

3



The opposite of a lazy evaluation is an eager evaluation. Eager evaluations fully evaluate
their parameters collection upon runtime.

1.2 Overview of ClojurEd project

ClojureEd is a project at UMM that is devoted to increasing usability of Clojure in an
educational setting, in particular in introductory classes. It originated in 2013 as a joint
effort of alumni, students, and faculty. Several students have contributed to it as a part of
several research efforts, in particular as a part of a two months summer research program in
2014 sponsored by the HHMI (Howard Hughes Medical Institute) grant and UMM MAP
(Morris Academic Partnership). Two other students are currently working on the project
sponsored by UMN UROP (Undergraduate Research Opportunity Program).

As a part of the project we have developed the system of modifying Clojure error messages,
as described in section 2. The current challenges involve integrating our system with Clo-
jure project management tools and IDEs. The summer project explored some approaches
to this problem, but did not result in a solution. Recently we have identified elements of the
Clojure project architecture that would allow us to develop plugins to handle student code
in a way that would not require any advanced knowledge (such as working with command
line) on their part. However, this is still work in progress, and no working solution exists at
this point. Section 3 details these efforts and challenges.

The code is available at

https://github.com/Clojure-Intro-Course/clojure-intro-class

2 Error Messages

2.1 Current error messages in Clojure

Error messages are an important part of programming since they are the main source of
communication between a user and the system when an error occurs in the program. Error
messages are especially important for introductory programmers who have had little to no
experience with troubleshooting programs. These error messages need to provide helpful
and easy-to-understand information that can be used to resolve issues.

Error messages in Clojure are not particularly useful for introductory programmers because
they do not provide information that can help guide a student in fixing the error. Also,
Clojure error messages are typically complex because they originate from the underlying
Java interpreter (JVM), which most novice programmers will be unfamiliar with. Below
are some examples of error messages in Clojure that might be unhelpful or unintuitive for
an introductory student.

4

https://github.com/Clojure-Intro-Course/clojure-intro-class


2.1.1 Example 1

Consider the following (erroneous) code fragment:

(defn square-this (* input input))

In this code sample, the programmer is attempting to create a function square-this
which will take a number and return the square of its value. However, the programmer for-
got to declare that input should be a parameter. In Clojure, function declarations always
require a vector containing the declared parameter names. The resulting error message is:

IllegalArgumentException Parameter declaration * should be
a vector
clojure.core/assert-valid-fdecl (core.clj:6842)

It does provide key words that could lead the programmer to fixing the issue such as
Parameter and vector. However, the error message also includes information that
a new programmer might find intimidating or confusing such as

clojure.core/assert-valid-fdecl (core.clj:6842).

The error can be corrected by placing a vector of inputs, in this case containing a single
input, right after the function name. Here is an example of the code above after corrections
have been made:

(defn square-this [input] (* input input))

2.1.2 Example 2

In the next example, the programmer is attempting to return a new hashmap with an added
key-value pair. The function assoc is generally used to make this happen.

(assoc :a 3 {:a 5, :b 8, :c 9})

In this attempt, the programmer did not put the arguments for assoc in the correct order.
When using the function assoc, the hashmap should go before the new key and value.
The error message that results follows:

ClassCastException clojure.lang.Keyword
cannot be cast to clojure.lang.Associative
clojure.lang.RT.assoc (RT.java:702)

Since Clojure expects the first argument to be a hashmap and it is not, it tries to cast the key-
word :a into a hashmap. This error message refers to clojure.lang.Associative,
which is actually a Java interface. Referring to that interface may not be useful for Clojure
programmers if they have little to no experience with Java or type hierarchies. Further-
more, the error message refers to typecasting, which is unfamiliar to Clojure users since
Clojure is dynamically typed with no explicit type declarations. The error message is inef-

5



fective at explaining to the programmer that the underlying problem with their code was a
misordering of arguments. Here is an example of the code above after corrections:

(assoc {:a 5, :b 8, :c 9} :a 3)
-> {:c 9, :b 8, :a 3}

2.2 Error message transformations

Since standard Clojure error messages are generally unhelpful, we aim to replace many
Clojure error messages with improved ones. A way of accomplishing this is by reading in
a user’s code and wrapping it in a try/catch block. Then any errors thrown by the user’s
code will be checked against a large collection of regular expressions. If a regular expres-
sion matches, important details from the original error message are captured and used to
insert details into our replacement message. However, this try/catch approach does not
work well in all situations. Additional technical challenges arise when dealing with com-
piler exceptions, the REPL, and lazy sequences. Section 3 discusses the implementation
details and current progress in more detail.

In the case of predefined functions, such as map, we achieve more informative error mes-
sages through function substitution. This involves defining functions with the same name
as standard Clojure functions. Within these definitions, we can do type checking on argu-
ments passed in. If the type checks find an error, our system displays a customized error
message. If no type errors are found, the arguments are passed on to the actual corre-
sponding Clojure function. Although this method can only handle runtime exceptions, it
is advantageous because we can capture the actual values of the arguments passed in to
the redefined functions and use them to provide a detailed error message. As an example,
consider the following erroneous code:

(map "add one" [1 2 3])

Clojure provides the following error message:

ClassCastException java.lang.String cannot be cast to
clojure.lang.IFn clojure.core/map/fn--4245 (core.clj:2557)

Our function substitution error handling displays a more informative message:

ERROR: In function map, the first argument "add one" must be
a function but is a string.

This message provides information that the problem occurred in the first argument, the
offending argument’s value was “add one”, and that the argument was a string instead of
a function. While function substitution is cumbersome because it involves redefining each
function individually, it is the only way to provide the user with specific information about
which arguments are causing the problem.

Both the try/catch and function substitution methods together, unfortunately, do not
handle all possible cases. For example, complexities arise when students define their own

6



functions, especially if they are anonymous functions. We are unable to anticipate the func-
tion definitions that users of our system create, so we cannot rely on function substitution
for those cases. The try/catch approach must handle those scenarios. Replacement
error messages are even harder to make for anonymous functions since they have no name
by which we can refer to them. Although our system does not handle all cases, we hope
that it will be helpful in the majority of cases that a Clojure programmer will encounter.

2.3 User scenarios

In order to better understand what our software users might encounter, we developed user
scenarios detailing typical coding problems a new programmer might face. To create these
user scenarios, we created solutions to common beginner programming exercises and pur-
posefully introduced errors that a new programmer might make. We then recorded the error
messages that these solutions produced. We also took note of the underlying cause of the
errors so that we have a better idea of how to improve upon the error messages for our
program. We then took the same solution and ran it within our program to compare the
error message our system produces against the one Clojure produces.

These user scenarios showed us typical errors a student will be experiencing when learning
to program in Clojure for the first time. For example, when a student first starts writing
basic operations in Clojure, a typical mistake might be forgetting to put the function in
front of the arguments, such as (5 - 5), where it should be (- 5 5). This produces a
message that would be unhelpful for introductory programmers:

ClassCastException java.lang.Long cannot be cast to
clojure.lang.IFn user/eval769 (core.clj line 675)

In this error message, clojure.lang.IFn is a Java type representing Clojure functions.
So, the error message is actually saying that 5 is a number, not a function, since Clojure
expected the function name to be listed first. Our system produces the following error
message to replace the one above:

ERROR: Attempted to use a number, but a function was
expected. intro.core/-main (core.clj line 675)

2.4 Future work: hints

While the error message our system produced above says what the core problem is, it does
nothing to suggest to the user to check that the arguments are in the correct order, which is
the fundamental issue. We are developing a system of hints that offer additional guidance
in figuring out why errors have occurred. Hints are suggestions shown to the user along
with an error message. Since there is no sure way of telling exactly what went wrong, we
will offer several hints that may be applicable to the situation.

7



For example, a ClassCastException is usually thrown when programmers place ar-
guments in an incorrect order. However, a ClassCastException can be thrown in
many other cases as well, which can make providing a specific hint challenging. Thus, our
system provides several hints in order to cover a variety of situations. Hopefully, one of the
suggestions will be helpful in solving the real issue.

Developing user scenarios was a helpful exercise because it allowed us to immediately
know the root cause of an error even before seeing the error message. This allowed us to
easily record a human interpretation of the problem and relate it to the error. This process
gave us a useful methodology for creating hints. As an example, the following user scenario
involves a hypothetical attempt to write a program that would print “Hello World”:

(print Hello World)

This results in the Clojure error message:

CompilerException java.lang.RuntimeException:
Unable to resolve symbol: Hello in this context

Our hint for this may be more informative and educational for a new programmer than the
error message above:

It looks like Clojure is expecting that Hello is something
named in your program. If you wanted Hello and any following
words to be plain text, try surrounding them with double
quotes. If Hello is referring to something named in your
program, make sure it is spelled correctly.

User scenarios provide a useful methodology for generating hints, which we will continue
to use to extend the system. We plan to work with Clojure beginners interactively to im-
prove the hints in the system. We also plan to provide links to Clojure documentation when
appropriate in the hints. Once beginner programmers are comfortable with the terminology
used on the documentation pages, directing them to the documentation will provide them
with a more concrete understanding of the language.

3 Technical Setup

In our prospective error handling, there are a large number of technical issues. First we
need to figure out how to catch and process the errors. Then, we need to figure out how to
integrate that system with the tools for managing Clojure projects. Throughout this process
it is important to be mindful of usability for introductory students. Therefore we would
like to synthesize the error handling system and the tools used by the student in a way that
is both usable and robust. The system as a whole is a work in progress; the development
and choice of tools takes a significant amount of time. We spent our time exploring tools
and how to implement them. We decided that we would like to avoid altering the code

8



of the tools themselves, instead we would like to develop plugins that would provide the
functionality that we need.

3.1 On the nature of errors in Clojure

There are two different environments where code can be evaluated in Clojure. A user can
evaluate all of their code by running it, or they can evaluate code snippets using the REPL.
When developing code, it is common practice for a user to use REPL to test pieces of
their code. This is practice is described in depth in section 1.1. Due to the importance
of REPL interactions for code development and debugging, it is essential for the errors in
both environments to be consistent. Therefore, we need to make sure that our error handling
system is capable of addressing the errors from compilation, runtime and REPL.

In Clojure, error messages are divided into two different categories, compilation time and
runtime. As their names imply, compilation errors occur when the code is compiled, and
runtime errors occur when the code is run. Compilation errors cannot be handled by a
simple try/catch because they originate in the compiler before the code is even evalu-
ated. Therefore, we need to catch the errors from the compiler so that we can handle them.
The compiler errors common in Java shift to runtime errors in Clojure, because the types
in Clojure are dynamic and are thus checked at runtime. Handling runtime errors is made
relatively simple by using a try/catchwith the exception of handling errors that involve
laziness. Since lazy sequences are evaluated when they are needed, an error in a lazy se-
quence will not occur until the sequence needs to be evaluated. This means that the error
will often not occur where it originated. When this is the case, the user will be provided
with unhelpful or often misleading error messages about the nature of the problem. These
errors can be very frustrating to troubleshoot especially for introductory students.

None of these problems have not been resolved, but we have determined approaches that
should solve these problems. Finding the origin of errors caused by laziness has not been
solved, but we have a potential solution that involves forcing evaluation of lazy sequences
in student code. Compilation errors are also problematic, but we hope to resolve this by
intercepting error messages as they are created, which is detailed in section 3.4.

3.2 Leiningen

Leiningen is an open source project under active development that is the primary tool for
project management in the Clojure community[3]. Leiningen is a fully featured project
manager that cleanly deals with dependencies as well as provides useful tools for develop-
ing projects. When a project is run in Leiningen, Leiningen will resolve all dependencies.
For example, if your project requires a plugin, Leiningen will automatically retrieve, in-
stall, and apply that plugin to your code. After it has resolved the dependencies, Leiningen
uses other tools to build, compile, and run the project. Leiningen makes running Clojure
projects extremely simple for the user. With Leiningen, it only takes one command to begin

9



a new project, and it only takes one command to run a project. Because of the level of ab-
straction that Leiningen offers, we have decided that it is the best option for an introductory
course.

While Leiningen is a very helpful tool, there are still some aspects that are challenging
for introductory students. The most difficult of which is the interface. Leiningen uses
the command line as its primary interface. The command line is both a distraction and
a barrier to teaching the material in an introductory course. Therefore, we would like to
abstract over the command line by using a graphical interface, ideally integrated with the
IDE used by students. This graphical interface would extend the simplicity of Leiningen
while still providing the same functionality needed by students.

3.3 IDEs

Choosing the right IDE is important, especially for an introductory class, because it is
the environment in which students will develop their code. We have looked into many of
the IDEs available for Clojure, and we have decided that the most promising choices are
LightTable and Nightcode. Both IDEs offer intuitive interfaces, syntax checking, built-
in REPLs, and easy project management. They each use Leiningen to build projects, but
neither of them provides a complete integration with Leiningen. Users still need to use
the command line for some functionality. They are also both maintained by open source
communities and are under active development. This allows us to take advantage of new
features and modifications developed by others.

Both IDEs have a lot of functionality that we are looking for, but they do have some notable
differences. For instance, LightTable requires a separate installation of Leiningen. This
adds another layer of difficulty for the student since installing Leiningen is non-trivial.
Nightcode comes packaged with its own distribution of Leiningen. This makes Nightcode
easier to install and use. The REPL differs between each IDE. In LightTable, the user
opens up REPL using a context menu, and the REPL constantly evaluates each line of code
in it. This ultimately provides more information, but it is very different from the traditional
REPL in ways that may be a little confusing for introductory students. In Nightcode, the
REPL will always up in a separate frame, and each line is only evaluated when the user hits
enter. LightTable uses hot keys and a context menu to do a lot of the tasks in LightTable
such as running the project or starting a REPL. This is less familiar to introductory students,
and it may be a little daunting at first. LightTable does provide a nice easy reference for
searching for the appropriate hot keys to lessen the learning curve. Alternatively, Nightcode
uses a lot of clearly labeled buttons and tabs that are intuitive for the user to perform tasks.
Since it is unclear which IDE will be more common in the Clojure community in the future,
we plan to support both options.

10



3.4 Approaches

Our first approach was to develop an IDE-specific plugin to intercept the error messages
going to the console of the IDE. We discovered that it was not the IDE that was directly
interacting with the compiler. Our next approach was to use a Leiningen plugin to try and
intercept error messages. We searched through the Leiningen source code, and attempted
various methods of interacting with Leiningen. None of these approaches allowed us to
intercept the error messages that were being printed to the console. We have determined
that Leiningen uses nREPL, which is a Clojure interpreter, to handle compilation and error
messages.

The nREPL interpreter is a client-server system for evaluating user code. nREPL middle-
ware can intercept messages from the nREPL system and apply functions to those mes-
sages. nREPL middleware uses handlers for interacting with the messages. These handlers
look for operations with certain keywords and only are applied to those specific operations.
For example, an nREPL middleware can specify a handler for evaluation operations. The
middleware will inspect every operation that passes through nREPL. If it is an evaluation
operation, then the functions specified in the middleware will be applied to the operation.
If the operation is not an evaluation function, then nothing will be changed.

Now, our planned approach is to write an nREPL middleware to intercept the error mes-
sages handled by nREPL and clean them up. This approach is also preferable to our initial
IDE specific approach because it allows for our system to be IDE independent.

3.5 Implementing error handling

Dependencies

Console

nREPL Compiler

Student CodeLeiningen

Key
Code Flow
Errors
Defined By 

Figure 1: Workflow diagram of running a Clojure project in Leiningen

The current error handling system is described by figure 1.First, the student runs their
project through Leiningen using the console by calling lein run. Then, Leiningen will
take the dependencies defined in the student code and resolve them. After the dependencies

11



have been resolved, Leiningen then sends the code to nREPL to be compiled and evaluated.
Any errors are passed back to the current output device, which is the terminal by default.

In our approach, we would like to catch the errors from nREPL by using nREPL middle-
ware. Once we catch those errors we will transform them as described in section 2. After
being cleaned up, the error will then be rethrown to Leiningen, so that it can be printed out
for the student to see. We believe that nREPL handles all errors thrown by the compiler,
runtime, and the REPL. The middleware will then handle all of these cases in a consistent
manner.

Dependencies

Console

nREPL Compiler

Student CodeLeiningen

Key
Code Flow
Errors
Defined By 

GUI

Middleware

Lein Plugin

Figure 2: Planned workflow for our error handling system

Our plan for error handling is laid out in figure 2. First, the student will use our graph-
ical user interface(GUI) to run their project. The GUI abstracts over the command line
interactions by providing a way of interacting that is more familiar to students. Next, the
Leiningen plugin will inject any dependencies into the student’s code required by our sys-
tem. This includes our library of functions for the student or a graphical library that the
student may need. After being processed by the Leiningen plugin, the student code is then
given to nREPL by Leiningen to be evaluated. nREPL then uses the Clojure compiler to
compile the code. If any errors are thrown they will be given to the middleware. The mid-
dleware will then clean up those error messages before they are sent back to Leiningen to
be displayed by the GUI.

12



4 Conclusions

Currently we have a framework for making Clojure error messages more accessible for an
introductory student. However, we still need to integrate this framework with IDEs and
tools for managing students’ Clojure code. We have determined an approach to perform
such an integration, and are currently implementing it.

Further work would involve adjusting the error messaging framework based on the actual
users’ feedback, developing an environment that would make it easy for students to run
their code and manage their files, and performing usability studies to test that framework
and system.

References

[1] BIENIUSA, A., DEGEN, M., HEIDEGGER, P., THIEMANN, P., WEHR, S., GASBICH-
LER, M., SPERBER, M., CRESTANI, M., KLAEREN, H., AND KNAUEL, E. Htdp and
dmda in the battlefield: A case study in first-year programming instruction. In Proceed-
ings of the 2008 International Workshop on Functional and Declarative Programming
in Education (New York, NY, USA, 2008), FDPE ’08, ACM, pp. 1–12.

[2] FELLEISEN, M., FINDLER, R. B., FLATT, M., AND KRISHNAMURTHI, S. The struc-
ture and interpretation of the computer science curriculum. J. Funct. Program. 14, 4
(July 2004), 365–378.

[3] HAGELBERG, P., OSBORNE, A., LARKIN, D., AND CONTRIBUTORS. Leiningen
readme. https://github.com/technomancy/leiningen, 2015.

[4] HICKEY, R. The clojure programming language. In Proceedings of the 2008 sympo-
sium on Dynamic languages (New York, NY, USA, 2008), DLS ’08, ACM, pp. 1:1–1:1.

[5] O’BRIEN, T. Clojure’s advantage: Immediate feedback with repl. Radar (May 2012).

13


	Introduction and Background
	Overview of Clojure
	Overview of ClojurEd project

	Error Messages
	Current error messages in Clojure
	Example 1
	Example 2

	Error message transformations
	User scenarios
	Future work: hints

	Technical Setup
	On the nature of errors in Clojure
	Leiningen
	IDEs
	Approaches
	Implementing error handling

	Conclusions

