
Introduction
Background

Observations and Results
Conclusions and Future Work

Title
Terminology
Research Goals
Challenges

The Role of Method Call Optimizations
in the

Efficiency of Java Generics

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova

April 14, 2012

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Title
Terminology
Research Goals
Challenges

Terminology

Java HotSpot Virtual Machine (JVM)

An application developed by Oracle that interprets a compiled Java
program.

Just-in-Time Compiler (JIT)

A part of the JVM that optimizes code through recompilations at
run-time.

Java Generics

A type in Java that allow the contents of a container to be
bounded to a single, specified type. (E.g. ArrayList<String>).

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Title
Terminology
Research Goals
Challenges

Research Goals

Describe the influence of Java Generics on run times of Java
programs

Detect the presence of optimizations such as inlining and
devirtualization

Explore tools and methodology for observing JIT
optimizations of Java Generics:

Profilers such as XProf
Internal logging of JIT

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Title
Terminology
Research Goals
Challenges

Challenges: JVM Complexity

The HotSpot JVM documentation is not detailed and often
not up to date

Which JIT optimizations matter and why is difficult to assess

The HotSpot JVM is multi-threaded

JIT optimizations may be scheduled differently among
multiple runs of the same program

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Title
Terminology
Research Goals
Challenges

Challenges: JVM Diagnostics

Observer Effect:

Profilers can influence JIT optimizations as well as program
run times.

Absence of Relevant Data:

Differences among run times for multiple runs of the same
program may not be explainable by using the tools at our
disposal.

Presence of Irrelevant Data:

Tools can provide overwhelming amounts of information that
may or may not be useful in describing observations.

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Java Execution Model
JIT Optimizations
Java Generics

Java Execution Model

Java code is executed through a two-phase compilation process:

Initial compilation into bytecode

Additional recompilation by the JIT

Three internal representations exist:

Bytecode

Native code produced by the JIT

The Sea of Nodes within the JIT

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Java Execution Model
JIT Optimizations
Java Generics

JIT Optimizations

During JIT compilation, optimizations are made to increase
efficiency and decrease run time of the program

Devirtualization

The JVM uses Virtual Method Lookup to locate the correct
method

JIT replaces these calls with jumps after repeated look-up

Inlining

The method call is replaced by the code it represents

A method call threshold must be reached before optimizations
take place

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Java Execution Model
JIT Optimizations
Java Generics

Java Generics

public class ArrayList<T>

ArrayList<String> strArrayList = new

ArrayList<String>();

public class ArrayListInteger extends

ArrayList<Integer>

The last example is referred to as bound narrowing, where the
element type of a class is more specific than that of its superclass

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Bound Narrowing and Test Examples
Instability
Observations

Bound Narrowing

public class Generic<K, V> extends HashMap<K, V>

public class Narrowed extends HashMap<Integer,

String>

hashMap = new Generic<Integer, String>();

hashMap = new Narrowed();

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Bound Narrowing and Test Examples
Instability
Observations

Test Examples

public boolean containsValue(String value) {

// some unimportant code removed

Entry[] tab = table;

for (int i = 0; i < tab.length; i++)

for (Entry e = tab[i]; e != null; e = e.next)

if (value.equals(e.value))

return true;

return false;

}

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Bound Narrowing and Test Examples
Instability
Observations

Narrowed and Generic Test Runs

1Narrowed 2Generic

7.
0

7.
5

8.
0

8.
5

C
P

U
 T

im
e 

(s
ec

.)

Running times for Narrowed and Generic runs.

100,000,000 method calls for containsValue

10 test runs for each of Narrowed and Generic.

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Bound Narrowing and Test Examples
Instability
Observations

Instability

Running the same code multiple times may result in differing run
times: instability

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Narrowed 6.87 8.09 8.24 8.81 6.87 8.58 6.87 8.03 6.87 6.61
Generic 8.55 8.53 7.84 7.83 8.59 8.82 7.82 7.83 7.83 8.60

In some cases two runs may produce identical logs (Generic)

In other cases there are differences in logs (Narrowed)

We can use the differences in logs to explain the second type
of instability

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Bound Narrowing and Test Examples
Instability
Observations

LogCompilation of Two Narrowed Test Runs: Compilations
Slow Run: 8.87 s

Fast Run: 6.97 s

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Bound Narrowing and Test Examples
Instability
Observations

LogCompilation of Two Narrowed Test Runs: Nodes
Slow Run: 8.87 s

Fast Run: 6.97 s

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Bound Narrowing and Test Examples
Instability
Observations

XProf

Slow Run: 8.87 s

Compiled + native Method

77.0% 676 + 0 Narrowed.containsValue

21.8% 191 + 0 TestNarrowed.innerLoop

98.7% 867 + 0 Total compiled

Fast Run: 6.97 s

Compiled + native Method

99.1% 672 + 0 TestNarrowed.innerLoop

0.1% 1 + 0 Narrowed.containsValue

99.3% 673 + 0 Total compiled

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Conclusions

Able to classify and distinguish instability through:

Differences in LogCompilation
Differences in XProf output

Observed evidence of specific methods being inlined

Developed strategies for describing specific behaviors of JIT

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics



Introduction
Background

Observations and Results
Conclusions and Future Work

Open Problems and Future Work

Use these strategies to explain other behaviors associated with
Java generics

More recent versions of Java SE 6

Extend to Java SE 7

Jeffrey D. Lindblom, Seth Sorensen, Elena Machkasova Method Call Optimizations in the Efficiency of Java Generics


	Introduction
	Title
	Terminology
	Research Goals
	Challenges

	Background
	Java Execution Model
	JIT Optimizations
	Java Generics

	Observations and Results
	Bound Narrowing and Test Examples
	Instability
	Observations

	Conclusions and Future Work

