Optimizing Java Programs using Generic Types
Eli Mayfield, J. Kyle Roth, Daniel Selifonov, Nathan Dahlberg, Elena Machkasova (Advisor)
University of Minnesota, Morris
600 E 4th Street, Morris, MN 56267
{mayf0016, roth0323, selif004, dahlb061, elenam}@morris.umn.edu
Abstract
Our research involves improving performance of programs written in the Java programming language. By selective specialization of generic types, we enable the compiler to eliminate typecasting, and provide type information to remove dynamic method lookup at runtime. An example of this specialization using Quicksort showed performance improvement of over 20%.
Categories and Subject Descriptors D.3.3 [Programming Languages]: Language Contructs and Features – Classes and objects, Inheritance, Polymorphism. D.3.4 [Programming Languages]: Processors – optimization

General Terms Performance, Languages
1. Introduction

Generic types were introduced into the Java programming language in October 2004. Generic types ensure type safety. Java implements generic types by type erasure: after objects are checked to match the type parameter, type information is removed. Typecasts to specific instance types are then inserted by the compiler.[1]
Most Java compilers convert programs into platform-independent bytecode which is then run by the Java virtual machine (JVM). Just-In-Time (JIT) compilers were added to the JVM to improve performance through dynamic compilation, converting bytecode into native code as a program runs. Sun Microsystems developed the HotSpot™ JVM to compile only frequently called methods, to decrease the overhead of a run-time compilation.[2]
HotSpot has two modes, Client and Server. Client mode starts programs as quickly as possible, while Server mode is more beneficial to large computations, performing more effective but time-consuming optimizations during compilation. Our times represent Server mode results. Our goal is to improve performance of generic types in Server mode while maintaining, and hopefully improving, Client mode performance.
2. Our Optimization
We optimize programs by selectively creating copies of generic classes with more specific class bounds. Presently, we perform this optimization by hand.
As an example, a general-purpose container such as ArrayList would be specialized to uniquely determine what methods are being called, reducing the need for dynamic method lookup.[2] Specializing classes also removes the need for typecasting, such as when retrieving elements from a list:
ArrayList<String> s =

new ArrayList<String>();

String in = “hello”;

s.insert(in);

String out = s.get(0);

The bytecode implementation of this code includes a typecast to a String. By creating a specialized copy of ArrayList with the bound changed from <E> to <E extends String>, we can remove this typecast.

There are several limitations to our optimization. This is a whole-program optimization – all code must be known. We assume there is no dynamic code loading or reflection. We cannot specialize any class that uses multiple actual parameters and contains static data, because creating specialized copies of the class would create separate copies of the data. Additionally, classes with explicit type-erased operations cannot be optimized since changing the bounds changes the type used in the type casting.
2.1 Partial Optimization
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright is held by the author/owner(s).

OOPSLA’07 October 21–25, 2007, Montréal, Québec, Canada.

ACM 978-1-59593-865-7/07/0010.

We call a specialization “complete” when all parameterized classes used in a program, and all parameterized classes they inherit from, are specialized. However, not all classes in a program need to be specialized in order to see performance improvements. We can also specialize a program by only changing one or two classes which will make the most difference. We refer to such optimizations as “partial” optimizations.
3. Results Using Quicksort
A realistic example for finding the performance change caused by our optimization is Quicksort, storing data in an ArrayList and sorting it, using random pivot points. We used two lists of 1,500 numbers, randomly generated with a constant seed. One list stored Integers and one list stored Strings. Each test looped through this process 30 times, and we executed twenty tests per run. We used our own copies of the Java Collections library, to allow us to experiment with partial optimizations.
3.1 Variations in Optimizations

We tested five variants of Quicksort.
3.1.1 Original
The Original (labeled 1-O) implementation of Quicksort used non-specialized parameters in all classes.
3.1.2 ArrayList
The ArrayList (2-AL) implementation of Quicksort stored data in specialized ArrayLists – no other classes were changed.
3.1.3 Quicksort
The Quicksort (3-QS) implementation used a specialized Quicksort class, with a bound of <T extends Comparable<T>>
3.1.4 Quicksort ArrayList
The QuicksortArrayList (4-QSAL) optimization specializes both Quicksort (as the QS optimization does) and ArrayList (as the AL optimization does).
3.1.5 Complete
Finally, the Complete (5-C) implementation specializes Quicksort, along with ArrayList and all classes and interfaces it inherits from (List, Collection, Iterable, AbstractList, and AbstractCollection), and iterators used by these classes (Iterator and ListIterator).
[image: image1.png]CPU Time (sec.)

12 13 14 15 16 17

11

[oe]

1-0

T
2-AL 3-QS 4-QSAL

Comparing Quicksort Optimizations

8 _
8
| o
—_— —_—
T T T

5-C

3.2 Results

The times we measured included time taken to insert the 3,000 elements into the two lists, then sort them using compareTo() with our Quicksort class. As Figure 1 shows, the O implementation took about 15 seconds to complete each run. The AL implementation took about 12 seconds; all of our other optimizations took about 11 seconds. This gives a performance gain of about 27% in this example.
4. Conclusions
Specializing the Quicksort class allows devirtualization (and possibly inlining) of Integer and String methods, such as compareTo(). Specializing type parameters in this case is beneficial to the performance of our program. One downside of this optimization is that it causes significant code duplication – especially Complete specialization. However, this drawback is not as pronounced with partial optimizations, and some partial optimizations can perform just as well as (and occasionally better than) a complete specialization. In particular, the QS and QSAL partial optimizations show promising results in these this and other tests, including Client mode tests, tests with different sized arrays, and tests with different loop counts.
5. Future Work
Much can still be examined about how to determine which programs will benefit from the optimization, and what changes should be made in a partial optimization such that they cause the greatest performance improvement. The next goal is to develop an algorithm which finds where optimizations can be performed and performs the optimization automatically, whenever possible and beneficial. We are also considering an interactive tool that allows programmers to perform the specialization interactively when the fully automatic transformation is not possible.

Acknowledgements

Many thanks to Elena Machkasova, our advisor for this project, and Nicholas McPhee for helpful feedback.
References

[1] Gilad Bracha. Generics in the Java Programming Language. Sun Microsystems, java.sun.com, 2004.

[2] Daniel Selifonov, Nathan Dahlberg, Elena Machkasova. On the Algorithm for Specializing Java Programs with Generic Types. Midwest Instruction and Computing Symposium 2007.

Figure 1. Comparing Quicksort Optimizations

.

PAGE

