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Overview of the calculus

Untyped CBN calculus
Records are unordered collections of labeled terms
Records represent mutual dependencies, including cyclic
dependencies
Cyclic dependencies arise in separate compilation,
modules and linking, letrec.
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Overview of records

Example of a record:
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1]

3 components, with labels l1, l2, l3
labels are bound to λ-terms
components reference each other via labels

Evaluation ⇒ of a record (leftmost, outermost strategy):

[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] ⇒
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ (λx .x) @ l1] ⇒
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l1] ⇒
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ 2 + 3] ⇒
[l1 7→ 5, l2 7→ λx .x , l3 7→ 2 + 3] ⇒ . . .

At most one evaluation step is possible in each component.
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Overview of records (cont.)

A rewriting relation →:

[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] →
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ (2 + 3)] →
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ 5] →
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ (λx .x) @ 5] →

Computational soundness: rewriting steps preserve the
meaning of a term, as defined by ⇒.
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Term-level calculus

Terms and term contexts:

M ::= c | x | l | • | λx .M | M1 @ M2 | M1 + M2
C ::= � | λx .C | C @ M | M @ C | C + M | M + C
E ::= � | E @ M | E + M | c + E

c - constants, x , y , z - variables, l - labels, • - black hole.
C - general context (the hole may be anywhere in a term), E -
evaluation context.
C{M} is the result of C with M.
Terms: λx .2 + 3, (λx .x) @ •, l1 + 2
Evaluation contexts: �, �+ l1, � @ λx .x
Non-evaluation general contexts: λx .�, (λx .x) @ �
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Relations on terms

 - the elementary reduction, ⇒ - evaluation, → - rewriting
relation (reduction).

(λx .M) @ N  M[x := N] (β)
c1 + c2  c3 (the result of the operation +) (op)
C{R} → C{Q} where R  Q
E{R} ⇒ E{Q} where R  Q

Non-evaluation: ↪→ = → \ ⇒
Examples:

(λx .x) @ (2 + 3) ⇒ 2 + 3
(λx .x) @ (2 + 3) ↪→ (λx .x) @ 5
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Record calculus

Records:

D ::= [l1 7→ M1, ..., ln 7→ Mn], li 6= lj for i 6= j
D ::= [l 7→ C, l1 7→ M1, . . . , ln 7→ Mn] record context
G ::= [l 7→ E, l1 7→ M1, . . . , ln 7→ Mn] record eval. context,

C is a term context, E is a term evaluation context.

Records: [l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1],
[l1 7→ •, l2 7→ λx .l1]

Evaluation context: [l1 7→ �+ 2, l2 7→ λx .x , l3 7→ l2 @ l1]

Non-evaluation context: [l1 7→ 2 + 3, l2 7→ λx .�, l3 7→ l2 @ l1]
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Relations on records: term reduction

Term reduction: reducing a component in a record.

D{R} → D{Q}, R  Q (T )
G{R} ⇒ G{Q}, R  Q (TE)

Examples:

[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] ⇒
[l1 7→ 5, l2 7→ λx .x , l3 7→ l2 @ l1]
[l1 7→ λx .2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] ↪→
l1 7→ λx .5, l2 7→ λx .x , l3 7→ l2 @ l1]
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Relations on records: substitution

Substitution:

D{l} → D{M}, l 7→ M ∈ D{l}, D 6= [l 7→ E, . . . ] (S)
G{l} ⇒ G{M}, l 7→ M ∈ G{l}, G 6= [l 7→ E, . . . ] (SE)

Examples:

[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] ⇒
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ (λx .x) @ l1]
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ l1] ↪→
[l1 7→ 2 + 3, l2 7→ λx .x , l3 7→ l2 @ (2 + 3)]
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Relations on records: black hole

Black hole • denotes apparent infinite substitution cycles.
Black hole reductions:

[l1 7→ E{l1}, ...] ⇒ [l1 7→ •, ...] (B1)
[l1 7→ E{•}, ...] ⇒ [l1 7→ •, ...] (B2)

(B1) – introduction of •:

[l1 7→ l1 + 1] ⇒ [l1 7→ •]

(instead of [l1 7→ l1 + 1] ⇒ [l1 7→ l1 + 1 + 1] ⇒ . . . )
(B2) – propagation of •:

[l1 7→ •, l2 7→ l1 + 1] ⇒ [l1 7→ •, l2 7→ •+ 1] ⇒ [l1 7→ •, l2 7→ •]
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Confluence of evaluation

Lemma (Confluence of Evaluation)
⇒ is confluent on records.

A potential non-confluence example (similar to one in Ariola,
Klop 1996):

[l1 7→ 2 + l2, l2 7→ l1 + 1] ⇒ [l1 7→ 2 + l1 + 1, l2 7→ l1 + 1]
[l1 7→ 2 + l2, l2 7→ l1 + 1] ⇒ [l1 7→ 2 + l2, l2 7→ 2 + l2 + 1]

Without a black hole both components in one record reference
l1, both components in the second record reference l2.
With a black hole both records evaluate to [l1 7→ •, l2 7→ •]:

[l1 7→ 2 + l1 + 1, l2 7→ l1 + 1] ⇒ [l1 7→ •, l2 7→ l1 + 1] ⇒
[l1 7→ •, l2 7→ •+ 1] ⇒ [l1 7→ •, l2 7→ •]
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Uniform normalization of ⇒

Lemma
Given a record D, if there exists D′ s.t.

D =⇒∗ D′

D′ is a normal form w.r.t. ⇒,
no component in D′ is bound to •,

then there is no infinite sequence D ⇒ D1 ⇒ D2 . . . .
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Classification of terms

Terms are grouped into classes denoted by symbols, possibly
with parameters. Terms in the same class have the same
“meaning”. Cl(M) denotes the class of M:

Cl(E{R}) = eval if R is a redex. Such terms are called
evaluatable.
Cl(c) = const(c), where const(c1) = const(c2) if and
only if c1 = c2. i.e. const(2) 6= const(3)

Cl(•) = •
Cl(λx .N) = abs
Cl(E{l}) = stuck(l), where stuck(l1) = stuck(l2) if and
only if l1 = l2
Cl(M) = error otherwise
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Classification of records

A class of a record is determined by classes of its components:
Cl([l1 7→ M1, . . . ln 7→ Mn]) = [l1 7→ Cl(M1), . . . ln 7→ Cl(Mn)]
if Cl(Mi) 6= • for all i s.t. 1 ≤ i ≤ n
Cl([l 7→ •, . . . ]) = ⊥

Example:

Cl([l1 7→ λx .x , l2 7→ l1 @ 1]) = [l1 7→ abs, l2 7→ stuck(l1)]

A black hole in an evaluation context represents infinite
divergence:

Cl([l1 7→ •, l2 7→ 2 + 3]) = ⊥
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Outcome and computational soundness

The outcome of a record D, denoted Outcome(D), is:
Cl(D′) where D′ is the normal form of D w.r.t. ⇒ if D has a
normal form
⊥ if evaluation of D diverges.

A relation R is meaning preserving if MRN implies that
Outcome(M) = Outcome(N).
A calculus is computationally sound if the reflexive, symmetric,
transitive closure of → is meaning preserving.

Theorem
Calculus of records is computationally sound.

⇒ is meaning-preserving by confluence and uniform
normalization. Need to prove that ↪→ is meaning-preserving.
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Black hole and computational soundness

Some challenges in proving computational soundness:

[l1 7→ l2 @ 2, l2 7→ λx .l1] ↪→ [l1 7→ l2 @ 2, l2 7→ λx .l2 @ 2]

The first record evaluates to a n.f. with a black hole:

[l1 7→ l2 @ 2, l2 7→ λx .l1] ⇒
[l1 7→ (λx .l1) @ 2, l2 7→ λx .l1] ⇒
[l1 7→ l1, l2 7→ λx .l1] ⇒ . . .
[l1 7→ •, l2 7→ λx .•]

The second one diverges:

[l1 7→ l2 @ 2, l2 7→ λx .l2 @ 2] ⇒
[l1 7→ (λx .l2 @ 2) @ 2, l2 7→ λx .l2 @ 2] ⇒
[l1 7→ l2 @ 2, l2 7→ λx .l2 @ 2] ⇒ . . .
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Meaning preservation of term reduction

Meaning preservation of a term reduction is proven using the
lift/project approach (introduced in Machkasova&Turbak, 2000).
Lift and project diagrams:
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∗+3 D3 D3

∗+3_______ _______ D5

Class preservation: if D1 ↪→ D2 then Cl(D1) = Cl(D2).
If D3 in lift is a normal form w.r.t. ⇒, we obtain equivalence of
outcomes of D1 and D2. Similarly assuming that D2 in project is
a normal form.
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Efficient evaluation strategy

Efficient evaluation strategy: a partial order on evaluation of
record components; similar to call-by-need.
Let D = [l 7→ M, . . . ]. The efficient strategy to evaluate l is
defined as:

If M = E{R}, evaluate R.
If M = E{l ′} and l ′ is evaluated to M ′, substitute M ′ for l ′.
If M = E{l ′} and M ′ is not a normal form, start evaluating
M ′ using the efficient strategy.
If M depends on • or on l directly or transitively, then the
efficient strategy stops and reports a cycle.
If M is a substitution-free normal form, the efficient strategy
for l in D is undefined.
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Efficient evaluation strategy: example

A sequence that follows the efficient strategy; l1 is the target
label:

[l1 7→ l2, l2 7→ l3 + 2, l3 7→ 1 + 3] ⇒
[l1 7→ l2, l2 7→ l3 + 2, l3 7→ 4] ⇒
[l1 7→ l2, l2 7→ 4 + 2, l3 7→ 4] ⇒
[l1 7→ l2, l2 7→ 6, l3 7→ 4] ⇒
[l1 7→ 6, l2 7→ 6, l3 7→ 4]

A valid evaluation, but not efficient strategy (duplicated a redex):

[l1 7→ l2, l2 7→ l3 + 2, l3 7→ 1 + 3] ⇒
[l1 7→ l3 + 2, l2 7→ l3 + 2, l3 7→ 1 + 3] ⇒ . . .

Any evaluation normal form can be reached by an efficient
strategy.
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(M1, M2)-similarity

Multihole contexts:

M ::= � | M | λx .M | M + M | M @ M

A record D1 is called (M1, M2)-similar to a record D2 (denoted
D1 ∼M1

M2
D2) if there exist multi-hole contexts M1, . . . , Mn s.t.

D1 = [l1 7→ M1{M1, . . . , M1}, . . . , ln 7→ Mn{M1, . . . , M1}],
D2 = [l1 7→ M1{M2, . . . , M2}, . . . , ln 7→ Mn{M2, . . . , M2}].

This means that some occurrences of M1 in D1 are replaced by
M2 in D2.
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Meaning preservation of substitution

Suppose D1 ↪→ D2 by a substiting a term M bound to l into a
component labeled l ′. Then D1 ∼l

M D2 (base case).
Use efficient evaluation strategy starting with labels l , l ′

(induction on the number of ⇒ steps).
We prove that D1 reaches a black-hole-free normal form if and
only if D2 does, and the resulting records remain (l , M)-similar:
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��

∗+3_______ _______ D′
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If both records evaluate to normal forms then the differences
are only in non-evaluation contexts, don’t effect the class of n.f.
(i.e the outcome).
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Conclusions

We have proven that a CBN system of mutually recursive
components is computationally sound.
Diagram-based approaches are problematic for such
systems.
The context-based method allows us to prove
computational soundness.

Future work:
Study applicability of the context method to other systems
with cyclic dependencies: letrec calculi; modules and
linking
Continue comparison with other methods of proving
computational soundness.
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