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Nonparametric Tests

Introduction

The most commonly used methods for inference about the means of quanti-

tative response variables assume that the variables in question have Normal
distributions in the population or populations from which we draw our data.

In practice, of course, no distribution is exactly Normal. Fortunately, our usual

methods for inference about population means (the one-sample and two-sample

t procedures and analysis of variance) are quite robust. That is, the results of robustness
inference are not very sensitive to moderate lack of Normality, especially when

the samples are reasonably large. Some practical guidelines for taking advan-

tage of the robustness of these methods appear in Chapter 7. 19
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What can we do if plots suggest that the population distribution is clearly
not Normal, especially when we have only a few observations? This is not a
simple question. Here are the basic options:

1. If lack of Normality is due to outliers, it may be legitimate to remove the
outliers. An outlier is an observation that may not come from the same
population as the other observations. Equipment failure that produced a
bad measurement, for example, entitles you to remove the outlier and
analyze the remaining data. If the outlier appears to be “real data,” you
can base inference on statistics that are more resistant than X and s.
Options 4 and 5 allow this.

2. Sometimes we can transform our data so that their distribution is more
nearly Normal. Transformations such as the logarithm that pull in the
long tail of right-skewed distributions are particularly helpful. Example
7.10 (page 421) illustrates use of the logarithm. A detailed discussion of
transformations appears in the extra material entitled Transforming
Relationships available on the course Web site.

3. In some settings, other standard distributions replace the Normal
distributions as models for the overall pattern in the population. We
mentioned in Chapter 5 (page 330) that the Weibull distributions are
common models for the lifetimes in service of equipment in statistical
studies of reliability. There are inference procedures for the parameters
of these distributions that replace the ¢ procedures when we use specific
non-Normal models.

4. Modern bootstrap methods and permutation tests do not require
Normality or any other specific form of sampling distribution. Moreover,
you can base inference on resistant statistics such as the trimmed mean.
We recommend these methods unless the sample is so small that it may
not represent the population well. Chapter 16 gives a full discussion.

5. Finally, there are other nonparametric methods that do not require any
specific form for the distribution of the population. Unlike bootstrap
and permutation methods, common nonparametric methods do not
make use of the actual values of the observations. The sign test (page 423)
works with counts of observations. This chapter presents rank tests
based on the rank (place in order) of each observation in the set of all the
data.

This chapter concerns rank tests that are designed to replace the ¢ tests and
one-way analysis of variance when the Normality conditions for those tests are
not met. Figure 15.1 presents an outline of the standard tests (based on Normal
distributions) and the rank tests that compete with them. All these tests require
that the population or populations have continuous distributions. That is,
each distribution must be described by a density curve that allows observations
to take any value in some interval of outcomes. The Normal curves are one
shape of density curve. Rank tests allow curves of any shape.

The rank tests we will study concern the center of a population or pop-
ulations. When a population has at least roughly a Normal distribution, we
describe its center by the mean. The “Normal tests” in Figure 15.1 test hypothe-
ses about population means. When distributions are strongly skewed, we often
prefer the median to the mean as a measure of center. In simplest form, the
hypotheses for rank tests just replace mean by median.
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Setting Normal test Rank test

One sample One-sample t test Wilcoxon signed rank test
Section 7.1 Section 15.2

Matched pairs Apply one-sample test to differences within pairs

Two independent samples Two-sample ttest Wilcoxon rank sum test
Section 7.2 Section 15.1

Several independent samples  One-way ANOVA Ftest Kruskal-Wallis test
Chapter 12 Section 15.3

We devote a section of this chapter to each of the rank procedures. Sec-
tion 15.1, which discusses the most common of these tests, also contains gen-
eral information about rank tests. The kind of assumptions required, the nature
of the hypotheses tested, the big idea of using ranks, and the contrast between
exact distributions for use with small samples and approximations for use with
larger samples are common to all rank tests. Sections 15.2 and 15.3 more briefly
describe other rank tests.

15.1 The Wilcoxon Rank Sum Test

Two-sample problems (see Section 7.2) are among the most common in statis-
tics. The most useful nonparametric significance test compares two distribu-
tions. Here is an example of this setting.

15.1 Weeds and corn yield. Does the presence of small numbers of weeds
reduce the yield of corn? Lamb’s-quarter is a common weed in corn fields. A
researcher planted corn at the same rate in eight small plots of ground, then
weeded the corn rows by hand to allow no weeds in four randomly selected
plots and exactly three lamb’s-quarter plants per meter of row in the other
four plots. Here are the yields of corn (bushels per acre) in each of the plots:!

Weeds per meter Yield (bu/acre)
0 166.7 172.2 165.0 176.9
3 158.6 176.4 153.1 156.0

Normal quantile plots (Figure 15.2) suggest that the population distribution
may be right-skewed. The samples are too small to assess Normality ade-
quately or to rely on the robustness of the two-sample ¢ test. We prefer to
use a test that does not require Normality.

The rank transformation

We first rank all eight observations together. To do this, arrange them in order
from smallest to largest:

153.1 156.0 158.6 165.0 166.7 172.2 1764 176.9
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FIGURE 15.2 Normal quantile plots of corn yields from plots with no weeds (left) and with
three weeds per meter of row (right), for Example 15.1.

The boldface entries in the list are the yields with no weeds present. We see
that four of the five highest yields come from that group, suggesting that yields
are higher with no weeds. The idea of rank tests is to look just at position in this
ordered list. To do this, replace each observation by its order, from 1 (smallest)
to 8 (largest). These numbers are the ranks:

Yield 153.1 156.0 158.6 165.0 166.7 172.2 1764 176.9
Rank 1 2 3 4 5 6 7 8

RANKS

To rank observations, first arrange them in order from smallest to
largest. The rank of each observation is its position in this ordered list,
starting with rank 1 for the smallest observation.

Moving from the original observations to their ranks is a transformation of
the data, like moving from the observations to their logarithms. The rank trans-
formation retains only the ordering of the observations and makes no other use
of their numerical values. Working with ranks allows us to dispense with spe-
cific assumptions about the shape of the distribution, such as Normality.

USE YOUR KNOWLEDGE

15.1 Numbers of rooms in top spas. A report of a readers’ poll in Condé
Nast Traveler magazine ranked 36 top resort spas.’> Let Group A be the
top-ranked 18 spas, and let Group B be the next 18 rated spas in the list.
A simple random sample of size 5 was taken from each group, and the
number of rooms in each selected spa was recorded. Here are the data:

Group A 552 448 68 243 30
Group B 329 780 560 540 240
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Rank all of the observations together and make a list of the ranks for
Group A and Group B.

15.2 The effect of Spa Bellagio on the result. Refer to the previous exer-
cise. Spa Bellagio in Las Vegas is one of the spas in Group B. Suppose
this spa had been the second spa selected in the random sample for
Group B. Replace the observation 780 in Group B by 4003, the number
of rooms in Spa Bellagio. Use the modified data to make a list of the
ranks for Groups A and B combined. What changes?

The Wilcoxon rank sum test

If the presence of weeds reduces corn yields, we expect the ranks of the yields
from plots with weeds to be smaller as a group than the ranks from plots with-
out weeds. We might compare the sums of the ranks from the two treatments:

Treatment Sum of ranks

No weeds 23
Weeds 13

These sums measure how much the ranks of the weed-free plots as a group
exceed those of the weedy plots. In fact, the sum of the ranks from 1 to 8 is
always equal to 36, so it is enough to report the sum for one of the two groups.
If the sum of the ranks for the weed-free group is 23, the ranks for the other
group must add to 13 because 23 + 13 = 36. If the weeds have no effect, we
would expect the sum of the ranks in each group to be 18 (half of 36). Here are
the facts we need in a more general form that takes account of the fact that our
two samples need not be the same size.

THE WILCOXON RANK SUM TEST

Draw an SRS of size #n; from one population and draw an independent
SRS of size 1, from a second population. There are N observations in
all, where N = 1y + n,. Rank all N observations. The sum W of the ranks
for the first sample is the Wilcoxon rank sum statistic. If the two
populations have the same continuous distribution, then W has mean

_ HI(N—F 1)
B 2

l’llnz(N+ 1)
wENTT

The Wilcoxon rank sum test rejects the hypothesis that the two
populations have identical distributions when the rank sum W is far
from its mean.*

nw

and standard deviation

*This test was invented by Frank Wilcoxon (1892-1965) in 1945. Wilcoxon was a chemist who
encountered statistical problems in his work at the research laboratories of American Cyanimid
Company.
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In the corn yield study of Example 15.1, we want to test
Hy: no difference in distribution of yields
against the one-sided alternative
H,: yields are systematically higher in weed-free plots

Our test statistic is the rank sum W = 23 for the weed-free plots.

USE YOUR KNOWLEDGE

15.3 Hypotheses and test statistic for top spas. Refer to Exercise 15.1.
State appropriate null and alternative hypotheses for this setting and
calculate the value of W, the test statistic.

15.4 Effect of Spa Bellagio on the test statistic. Refer to Exercise 15.2.
Using the altered data, state appropriate null and alternative hypothe-
ses and calculate the value of W, the test statistic.

15.2 Perform the significance test. In Example 15.1, n; = 4, n, = 4, and
there are N = 8 observations in all. The sum of ranks for the weed-free plots
has mean

_ m(N+1)
pw="—""5"

RN

=5 =18

and standard deviation

mmnay(N +1)
o= 12

4)(4
= OO _ 153464
12
Although the observed rank sum W = 23 is higher than the mean, it is only
about 1.4 standard deviations higher. We now suspect that the data do not
give strong evidence that yields are higher in the population of weed-free
corn.
The P-value for our one-sided alternative is P(W > 23), the probability
that W is at least as large as the value for our data when Hj is true.

To calculate the P-value P(W > 23), we need to know the sampling distri-
bution of the rank sum W when the null hypothesis is true. This distribution
depends on the two sample sizes 1; and 1,. Tables are therefore a bit unwieldy,
though you can find them in handbooks of statistical tables. Most statistical
software will give you P-values, as well as carry out the ranking and calculate
W. However, some software gives only approximate P-values. You must learn
what your software offers.
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15.3 Software output. Figure 15.3 shows the output from software that cal-
culates the exact sampling distribution of W. We see that the sum of the
ranks in the weed-free group is W = 23, with P-value P = 0.100 against the
one-sided alternative that weed-free plots have higher yields. There is some
evidence that weeds reduce yield, considering that we have data from only
four plots for each treatment. The evidence does not, however, reach the
levels usually considered convincing.

B s-PLUS

Exact Wilcoxon rank-sum test
data: Oweeds and 3weeds
rank-sum statistic W = 23, n = 4, m = 4, p-value = 0.100

alternative hypothesis: true mu is greater than 0

Itis worth noting that the two-sample ¢ test gives essentially the same result
as the Wilcoxon test in Example 15.3 (¢ = 1.554, P = 0.0937). A permutation
test (Chapter 16) for the sample means gives P = 0.084. It is in fact somewhat
unusual to find a strong disagreement among the conclusions reached by these
tests.

The Normal approximation

The rank sum statistic W becomes approximately Normal as the two sample
sizes increase. We can then form yet another z statistic by standardizing W:

_ W— uw

ow
_ W—nl(N—i- 1)/2

N \/nlnz(N+ 1)/12

Use standard Normal probability calculations to find P-values for this statis-
tic. Because W takes only whole-number values, the continuity correction
improves the accuracy of the approximation.

15.4 The continuity correction. The standardized rank sum statistic W in our
corn yield example is

Z

Wy 2318
ow  3.464

We expect W to be larger when the alternative hypothesis is true, so the
approximate P-value is

=144

=

P(Z > 1.44) = 0.0749
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Mann-Whitney test

The continuity correction acts as if the whole number 23 occupies the entire
interval from 22.5 to 23.5. We calculate the P-value P(W > 23) as P(W >
22.5) because the value 23 is included in the range whose probability we
want. Here is the calculation:

w— 2251
P(W222.5)=P< pw 225 8)

ow ~  3.464
= P(Z > 1.30)
= 0.0968

The continuity correction gives a result closer to the exact value P = 0.100.

USE YOUR KNOWLEDGE

15.5 The P-value for top spas. Refer to Exercises 15.1 and 15.3. Find uy,
ow, and the standardized rank sum statistic. Then give an approximate
P-value using the Normal approximation. What do you conclude?

15.6 The effect of Spa Bellagio on the P-value. Refer to Exercises 15.2
and 15.4. Answer the questions for Exercise 15.5 using the altered data.

We recommend always using either the exact distribution (from software
or tables) or the continuity correction for the rank sum statistic W. The exact
distribution is safer for small samples. As Example 15.4 illustrates, however,
the Normal approximation with the continuity correction is often adequate.

15.5 Software output. Figure 15.4 shows the output for our data from two
more statistical programs. Minitab offers only the Normal approximation,
and it refers to the Mann-Whitney test. This is an alternative form of the
Wilcoxon rank sum test. SAS carries out both the exact and the approximate
tests. SAS calls the rank sum S rather than W and gives the mean 18 and
standard deviation 3.464 as well as the z statistic 1.299 (using the continuity
correction). SAS gives the approximate two-sided P-value as 0.1939, so the
one-sided result is half this, P = 0.0970. This agrees with Minitab and (up to
a small roundoff error) with our result in Example 15.4. This approximate P-
value is close to the exact result P = 0.100, given by SAS and in Figure 15.4.

What hypotheses does Wilcoxon test?

Our null hypothesis is that weeds do not affect yield. Our alternative hypothesis
is that yields are lower when weeds are present. If we are willing to assume that
yields are Normally distributed, or if we have reasonably large samples, we use
the two-sample ¢ test for means. Our hypotheses then become

Hy: g = o2
Hy:py > w2

When the distributions may not be Normal, we might restate the hypothe-
ses in terms of population medians rather than means:

Hp: median; = median,

H,:median, > median,
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B Minitab

Mann-Whitney Confidence Interval and Test

0 weeds N = 4 Median = 169.45
3 weeds N = 4 Median = 157.30
Point estimate for ETAl - ETA2 is 11.30
97.0 Percent C.I. for ETAl - ETA2 is (-11.40,23.80)

W = 23.0

Test of ETA1l = ETA2 vs. ETAl > ETA2 is significant at 0.0970

(@)

Wilcoxon Scores (Rank Sums) for Variable YIELD
Classified by Variable WEEDS

Sum of Expected Std Dev Mean
WEEDS N Scores Under HO Under HO Score
4 23.0 18.0 3.46410162 5.75000000
3 4 13.0 18.0 3.46410162 3.25000000

Wilcoxon Two-Sample Test

Statistic (8) 23.000
Exact P-Values
One-Sided Pr >= S 0.1000
FIGURE 15.4 Output from the Two-Sided Px >= [S - Mean| 02000
Minitab and SAS statistical Normal Approximation (with Continuity Correction of .5)
software for the data in Example 7 = 1.29904
15.1. (a) Minitab uses the Normal Prob > |Z| 0.1939
approximation for the distribution
of W. (b) SAS gives both the exact
and approximate values. (b)

uT . . .
N0, The Wilcoxon rank sum test does test hypotheses about population medians, but

! only if an additional assumption is met: both populations must have distributions

of the same shape. That is, the density curve for corn yields with three weeds
per meter looks exactly like that for no weeds except that it may slide to a
different location on the scale of yields. The Minitab output in Figure 15.4(a)
states the hypotheses in terms of population medians (which it calls “ETA”) and
also gives a confidence interval for the difference between the two population
medians.

The same-shape assumption is too strict to be reasonable in practice. Recall
that our preferred version of the two-sample ¢ test does not require that the
two populations have the same standard deviation—that is, it does not make a
same-shape assumption. Fortunately, the Wilcoxon test also applies in a much
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average ranks

more general and more useful setting. It tests hypotheses that we can state in
words as

Hy: The two distributions are the same.

H,: One distribution has values that are systematically larger.

Here is a more exact statement of the “systematically larger” alternative
hypothesis. Take X; to be corn yield with no weeds and X, to be corn yield
with three weeds per meter. These yields are random variables. That is, every
time we plant a plot with no weeds, the yield is a value of the variable X;. The
probability that the yield is more than 160 bushels per acre when no weeds
are present is P(X; > 160). If weed-free yields are “systematically larger” than
those with weeds, yields higher than 160 should be more likely with no weeds.
That is, we should have

P(X; > 160) > P(X; > 160)

The alternative hypothesis says that this inequality holds not just for 160 but
for any yield we care to specify. No weeds always puts more probability “to the
right” of whatever yield we are interested in.>

This exact statement of the hypotheses we are testing is a bit awkward. The
hypotheses really are “nonparametric” because they do not involve any specific
parameter such as the mean or median. If the two distributions do have the
same shape, the general hypotheses reduce to comparing medians. Many texts
and computer outputs state the hypotheses in terms of medians, sometimes
ignoring the same-shape requirement. We recommend that you express the
hypotheses in words rather than symbols. “Yields are systematically higher in
weed-free plots” is easy to understand and is a good statement of the effect that
the Wilcoxon test looks for.

Ties

The exact distribution for the Wilcoxon rank sum is obtained assuming that
all observations in both samples take different values. This allows us to rank
them all. In practice, however, we often find observations tied at the same value.
What shall we do? The usual practice is to assign all tied values the average of
the ranks they occupy. Here is an example with six observations:

Observation 153 155 158 158 161 164
Rank 1 2 3.5 3.5 5 6

The tied observations occupy the third and fourth places in the ordered list, so
they share rank 3.5.

The exact distribution for the Wilcoxon rank sum W changes if the data
contain ties. Moreover, the standard deviation oy must be adjusted if ties are
present. The Normal approximation can be used after the standard deviation is
adjusted. Statistical software will detect ties, make the necessary adjustment,
and switch to the Normal approximation. In practice, software is required if
you want to use rank tests when the data contain tied values.

It is sometimes useful to use rank tests on data that have very many ties
because the scale of measurement has only a few values. Here is an example.
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15.6 Job satisfaction. Self-employed people generally have more control
over their work than those who work for others. Does this difference trans-
late into greater job satisfaction? A Pew Research Center survey compared
the job satisfaction rating of workers who were self-employed with those
who are not.* Here are the responses:

Count

Completely Mostly Mostly  Completely
Satisfied Satisfied Dissatisfied Dissatisfied | Total

Self-employed 99 142 8 5 254
Not self-employed 250 542 73 20 885

USE YOUR KNOWLEDGE

15.7 Analyze as a two-way table. Use the data in Example 15.6.

(a) Compute the percents of the different responses for the self-
employed workers. Do the same for those who are not
self-employed. Display the percents graphically and summarize
the differences in the two distributions.

(b) Perform the chi-square test for the counts in the two-way table.
Report the test statistic, the degrees of freedom, and the P-value.
Give a brief summary of what you can conclude from this
significance test.

How do we approach the analysis of these data using the Wilcoxon test?
We start with the hypotheses. We have two distributions of job satisfaction,
one for those who are self-employed and one for those who are not. The null
hypothesis states that the two distributions are the same. The alternative hy-
pothesis uses the fact that the responses are ordered from the most satisfied to
the least satisfied. It states that one of the employment groups is more satisfied
than the other.

Hy: Self-employed workers and those who are not self employed have the
same job satisfaction.

H,: One of the two groups of workers has greater job satisfaction than the
other.

The alternative hypothesis is two-sided. Because the responses can take only
four values, there are very many ties. All 25 workers who are completely dis-
satisfied are tied. Similarly, all workers in each of the four columns of the table
corresponding to the different responses are tied. The graphical display that
you prepared in Exercise 15.7 suggests that self-employed workers have greater
job satisfaction. Is this difference statistically significant?
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FIGURE 15.5 Output from SAS
for the job satisfaction survey of
Example 15.6. The approximate
two-sided P-value is 0.0002.
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15.7 Software output. Look at Figure 15.5, which gives software output for
the Wilcoxon test. The rank sum for the self-employed workers (using aver-
age ranks for ties) is W = 129,745. The standardized value for this statistic
is z = —3.75 and the two-sided P-value is P = 0.0002. There is very strong
evidence of a difference. Self-employed workers have greater job satisfaction
than workers who are not self-employed.

The NPARIWAY Procedure

Wilcoxon Scores (Rank Sums) for Variable Satisfaction
Classified by Variable group

Sum of Expected Std Dev Mean
group N Scores Under HO Under HO Score
SelfEmpl 254 129745.0 144780.0 4013.47353 510.807087

NotSelfE 885 519485.0 504450.0 4013.47353 586.988701
Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 129745.0000
Normal Approximation

4 -3.7460
One-Sided Pr < Z <.0001
Two-Sided Pr > |Z]| 0.0002

7Z includes a continuity correction of 0.5.

With more than 200 observations in each group and no outliers, we might
use the two-sample ¢ test (even though responses take only four values). To
perform the ¢ test, we recode the four responses numerically, using the val-
ues 1, 2, 3, and 4 for the responses “completely satisfied,” “mostly satisfied,”
“mostly dissatisfied,” and “completely dissatisfied.” The results are t = 3.54
with P = 0.0004. The P-value for two-sample ¢ test is essentially the same
as that for the Wilcoxon test. There is, however, another reason to prefer the
rank test in this example. The ¢ statistic treats the response values 1 through
5 as meaningful numbers. In particular, the possible responses are treated as
though they are equally spaced. The difference between “completely satisfied”
and “mostly satisfied” is the same as the difference between “mostly satisfied”
and “mostly dissatisfied.” This may not make sense. The rank test, on the other
hand, uses only the order of the responses, not their actual values. The re-
sponses are arranged in order from most satisfied to least satisfied, so the rank
test makes sense. Some statisticians avoid using t procedures when there is not
a fully meaningful scale of measurement.

Rank, £, and permutation tests

The two-sample ¢ procedures are the most common method for comparing the
centers of two populations based on random samples from each. The Wilcoxon
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rank sum test is a competing procedure that does not start from the condition
that the populations have Normal distributions. Permutation tests (Chapter 16)
also avoid the need for Normality. Tests based on Normality, rank tests, and
permutation tests apply in many other settings as well. How do these three
approaches compare in general?

First consider rank tests versus traditional tests based on Normal distribu-

tions. Both are available in almost all statistical software.

Moving from the actual data values to their ranks allows us to find an exact
sampling distribution for rank statistics such as the Wilcoxon rank sum W
when the null hypothesis is true. (Most software will do this only if there
are no ties and if the samples are quite small.) When our samples are small,
are truly random samples from the populations, and show non-Normal
distributions of the same shape, the Wilcoxon test is more reliable than the
two-sample ¢ test. In practice, the robustness of ¢ procedures implies that
we rarely encounter data that require nonparametric procedures to obtain
reasonably accurate P-values. The ¢ and W tests give very similar results in
our examples. Nonetheless, many statisticians would not use a ¢ test in
Example 15.6 because the response variable gives only the order of the
responses.

Normal tests compare means and are accompanied by simple confidence
intervals for means or differences between means. When we use rank tests
to compare medians, we can also give confidence intervals for medians.
However, the usefulness of rank tests is clearest in settings when they do
not simply compare medians—see the discussion “What hypotheses does
Wilcoxon test?” Rank methods emphasize tests, not confidence intervals.

Inference based on ranks is largely restricted to simple settings. Normal
inference extends to methods for use with complex experimental designs
and multiple regression, but nonparametric tests do not. We stress Normal
inference in part because it leads to more advanced statistics.

If you have already read Chapter 16 and use software that makes permu-

tation tests available to you, you will also want to compare rank tests with
resampling methods.

Both rank and permutation tests are nonparametric. That is, they require
no assumptions about the shape of the population distribution. A
two-sample permutation test has the same null hypothesis as the Wilcoxon
rank sum test: that the two population distributions are identical.
Calculation of the sampling distribution under the null hypothesis is
similar for both tests but is simpler for rank tests because it depends only
on the sizes of the samples. As a result, software often gives exact P-values
for rank tests but not for permutation tests.

Permutation tests have the advantage of flexibility. They allow wide choice
of the statistic used to compare two samples, an advantage over both the ¢
and Wilcoxon tests. In fact, we could apply the permutation test method to
sample means (imitating ¢) or to rank sums (imitating Wilcoxon), as well as
to other statistics such as the trimmed mean. Permutation tests are not
available in some settings, such as testing hypotheses about a single
population, though bootstrap confidence intervals do allow resampling
tests in these settings. Permutation tests are available for multiple
regression and some other quite elaborate settings.
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SECTION 15.1 Exercises

For Exercises 15.1 and 15.2, see pages 722—723; for
Exercises 15.3 and 15.4, see page 724; for Exercises 15.5
and 15.6, see page 726; and for Exercise 15.7, see

page 729.

Statistical software is very helpful in doing these exercises.
If you do not have access to software, base your work on
the Normal approximation with continuity correction

(page 725).

15.8 Do women talk more? Conventional wisdom
suggests that women are more talkative than men. One
study designed to examine this stereotype collected data
on the speech of 10 men and 10 women in the United
States.> The variable recorded is the number of words per
day. Here are the data: @ TALK10

Q/FU T/O
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e An important advantage of resampling methods over both Normal and
rank procedures is that we can get bootstrap confidence intervals for the
parameter corresponding to whatever statistic we choose for the
permutation test. If the samples are very small, however, bootstrap
confidence intervals may be unreliable because the samples don’t represent
the population well enough to provide a good basis for bootstrapping.

In general, both Normal distribution methods and resampling methods are
more useful than rank tests. If you are familiar with resampling, we recommend
rank tests only for very small samples, and even then only if your software gives
exact P-values for rank tests but not for permutation tests.

SECTION 15.1 Summary

Nonparametric tests do not require any specific form for the distribution of
the population from which our samples come.

Rank tests are nonparametric tests based on the ranks of observations,
their positions in the list ordered from smallest (rank 1) to largest. Tied obser-
vations receive the average of their ranks.

The Wilcoxon rank sum test compares two distributions to assess whether
one has systematically larger values than the other. The Wilcoxon test is based
on the Wilcoxon rank sum statistic W, which is the sum of the ranks of one
of the samples. The Wilcoxon test can replace the two-sample ¢ test.

P-values for the Wilcoxon test are based on the sampling distribution of
the rank sum statistic W when the null hypothesis (no difference in distribu-
tions) is true. You can find P-values from special tables, software, or a Normal
approximation (with continuity correction).

(a) Summarize the data for the two groups using
numerical and graphical methods. Describe the two
distributions.

(b) Compare the words per day spoken by the men with
the words per day spoken by the women using the
Wilcoxon rank sum test. Summarize your results and
conclusion in a short paragraph.

15.9 More data for women and men talking. The
data in the previous exercise were a sample of the data
collected in a larger study of 42 men and 37 women. Use
the larger data set to answer the questions in the previous
exercise. Discuss the advisability of using the Wilcoxon
test versus the 7 test for this exercise and for the previous
one. T TALK

15.10 Weeds and corn yield. The corn yield study of

Example 15.1 also examined yields in four plots having

Men Women X X X
nine lamb’s-quarter plants per meter of row. The yields
23871 5180 9951 12460 | 10592 24608 13739 22376 (bushels per acre) in these plots were
17155 10344 9811 12387 9351 7694 16812 21066
29920 21791 32291 12320 1628 1424 1627 162.4




There is a clear outlier, but rechecking the results found
that this is the correct yield for this plot. The outlier
makes us hesitant to use ¢ procedures because x and s are
not resistant.

(a) Is there evidence that 9 weeds per meter reduces corn
yields when compared with weed-free corn? Use the
Wilcoxon rank sum test with the preceding data and some
of the data from Example 15.1 to answer this question.

(b) Compare the results from part (a) with those from the
two-sample ¢ test for these data.

(c) Now remove the low outlier 142.4 from the data for
nine weeds per meter. Repeat both the Wilcoxon and ¢
analyses. By how much did the outlier reduce the mean
yield in its group? By how much did it increase the
standard deviation? Did it have a practically important
impact on your conclusions?

15.11 Storytelling and the use of language. A study of
early childhood education asked kindergarten students to
retell two fairy tales that had been read to them earlier in
the week. The 10 children in the study included 5
high-progress readers and 5 low-progress readers. Each
child told two stories. Story 1 had been read to them;
Story 2 had been read and also illustrated with pictures.
An expert listened to a recording of each child and
assigned a score for certain uses of language. Here are the
data:® Tm STORYTELLING

Story 1 Story 2 Story 1 Story 2
Child Progress score score | Child Progress score score
1 high 0.55 0.80 6 low 0.40 0.77
2 high 0.57 0.82 7 low 0.72 0.49
3 high 0.72 0.54 8 low 0.00 0.66
4 high 0.70 0.79 9 low 0.36 0.28
5 high 0.84 0.89 10 low 0.55 0.38

Is there evidence that the scores of high-progress readers
are higher than those of low-progress readers when they
retell a story they have heard without pictures (Story 1)?

(a) Make Normal quantile plots for the 5 responses in
each group. Are any major deviations from Normality
apparent?

(b) Carry out a two-sample 7 test. State hypotheses and
give the two sample means, the ¢ statistic and its P-value,
and your conclusion.

(¢) Carry out the Wilcoxon rank sum test. State
hypotheses and give the rank sum W for high-progress
readers, its P-value, and your conclusion. Do the ¢ and
Wilcoxon tests lead you to different conclusions?

15.12 Repeat the analysis for Story 2. Repeat the
analysis of Exercise 15.11 for the scores when children
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retell a story they have heard and seen illustrated with
pictures (Story 2). C STORYTELLING

15.13 Do the calculations by hand. Use the data in
Exercise 15.11 for children telling Story 2 to carry out by
hand the steps in the Wilcoxon rank sum test.

T STORYTELLING

(a) Arrange the 10 observations in order and assign
ranks. There are no ties.

(b) Find the rank sum W for the 5 high-progress readers.
What are the mean and standard deviation of W under the
null hypothesis that low-progress and high-progress
readers do not differ?

(c) Standardize W to obtain a z statistic. Do a Normal
probability calculation with the continuity correction to
obtain a one-sided P-value.

(d) The data for Story 1 contain tied observations. What
ranks would you assign to the 10 scores for Story 1?

15.14 Learning math through subliminal messages. A
“subliminal” message is below our threshold of awareness
but may nonetheless influence us. Can subliminal
messages help students learn math? A group of students
who had failed the mathematics part of the City
University of New York Skills Assessment Test agreed to
participate in a study to find out. All received a daily
subliminal message, flashed on a screen too rapidly to be
consciously read. The treatment group of 10 students was
exposed to “Each day I am getting better in math.” The
control group of 8 students was exposed to a neutral
message, “People are walking on the street.” All students
participated in a summer program designed to raise their
math skills, and all took the assessment test again at the
end of the program. Here are data on the subjects’ scores
before and after the program:’ C SUBLIMINALMATH

Treatment Group Control Group

Pretest Posttest Pretest Posttest
18 24 18 29
18 25 24 29
21 33 20 24
18 29 18 26
18 33 24 38
20 36 22 27
23 34 15 22
23 36 19 31
21 34
17 27

(a) The study design was a randomized comparative
experiment. Outline this design.

(b) Compare the gain in scores in the two groups, using a
graph and numerical descriptions. Does it appear that the
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treatment group’s scores rose more than the scores for the
control group?

(c¢) Apply the Wilcoxon rank sum test to the posttest
versus pretest differences. Note that there are some ties.
What do you conclude?

15.15 Effects of logging in Borneo. “Conservationists
have despaired over destruction of tropical rainforest by
logging, clearing, and burning.” These words begin a
report on a statistical study of the effects of logging in
Borneo.? Here are data on the number of tree species in
12 unlogged forest plots and 9 similar plots logged eight
years earlier: @ BORNEO

Unlogged Logged
22 18 17 4
22 20 18 14
15 21 18 15
13 13 15 10
19 13 12
19 15

(a) Make a back-to-back stemplot of the data. Does there
appear to be a difference in species counts for logged and
unlogged plots?

(b) Does logging significantly reduce the number of
species in a plot after eight years? State hypotheses, do a
Wilcoxon test, and state your conclusion.

15.16 Improved methods for teaching reading. Do
new “directed reading activities” improve the reading
ability of elementary school students, as measured by
their Degree of Reading Power (DRP) score? A study
assigns students at random to either the new method
(treatment group, 21 students) or traditional teaching
methods (control group, 23 students) Here are the DRP
scores at the end of the study:® @ READINGDRP

Treatment group Control group
24 61 59 46 42 33 46 37
43 44 52 43 43 41 10 42
58 67 62 57 55 19 17 55
71 49 54 26 54 60 28
43 53 57 62 20 53 48
49 56 33 37 8 42

For these data the two-sample ¢ test (Example 7.14,

page 436) gives P = 0.013 and a permutation test based
on the difference of means (Example 16.12, page 16-43)
gives P = 0.015. Both of these tests are based on the
difference of sample means. Does the Wilcoxon test, based
on rank sums rather than means, give a similar P-value?

15.17 Attitudes toward secondhand stores. To study
customers’ attitudes toward secondhand stores,
researchers interviewed samples of shoppers at two
secondhand stores of the same chain in two cities. Here
are data on the incomes of shoppers at the two stores,
presented as a two-way table of counts:!° @ SECONDHAND

Income City1 City 2
Under $10,000 70 62
$10,000 to $19,999 52 63
$20,000 to $24,999 69 50
$25,000 to $34,999 22 19
$35,000 or more 28 24

(a) Is there a relationship between city and income? Use
the chi-square test to answer this question.

(b) The chi-square test ignores the ordering of the
income categories. Is there good evidence that shoppers in
one city have systematically higher incomes than in the
other?

15.2 The Wilcoxon Signed Rank Test

We use the one-sample ¢ procedures for inference about the mean of one pop-
ulation or for inference about the mean difference in a matched pairs setting.
The matched pairs setting is more important because good studies are gener-
ally comparative. We will now meet a rank test for this setting.

15.8 Storytelling and reading. A study of early childhood education asked
kindergarten students to retell two fairy tales that had been read to them ear-
lier in the week. Each child told two stories. The first had been read to them,
and the second had been read but also illustrated with pictures. An expert
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listened to a recording of the children and assigned a score for certain uses of
language. Here are the data for five “low-progress” readers in a pilot study:!!

Child 1 2 3 4 5
Story 2 0.77 0.49 0.66 0.28 0.38
Story 1 0.40 0.72 0.00 0.36 0.55
Difference 0.37 —-0.23 0.66 —-0.08 —-0.17

We wonder if illustrations improve how the children retell a story. We would
like to test the hypotheses

Hy: Scores have the same distribution for both stories.
H,: Scores are systematically higher for Story 2.

Because this is a matched pairs design, we base our inference on the
differences. The matched pairs ¢ test gives t = 0.635 with one-sided P-value
P = 0.280. Displays of the data (Figure 15.6) suggest some lack of Normality.
We would therefore like to use a rank test.

2.0

1.0 4

absolute value

T T T T T 0.0 -
-1 0 1 2 3 -04 -02 0.0 0.2 0.4 0.6 0.8
Normal score Differences

FIGURE 15.6 Normal quantile plot and histogram for the five differences in Example 15.8.

Positive differences in Example 15.8 indicate that the child performed bet-
ter telling Story 2. If scores are generally higher with illustrations, the positive
differences should be farther from zero in the positive direction than the neg-
ative differences are in the negative direction. We therefore compare the ab-
solute values of the differences, that is, their magnitudes without a sign. Here
they are, with boldface indicating the positive values:

0.37 0.23 0.66 0.08 0.17

Arrange these in increasing order and assign ranks, keeping track of which
values were originally positive. Tied values receive the average of their ranks.
If there are cases with zero differences, discard them before ranking.

Absolute value 0.08 0.17 0.23 0.37 0.66
Rank 1 2 3 4 5
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The test statistic is the sum of the ranks of the positive differences. (We

could equally well use the sum of the ranks of the negative differences.) This is
the Wilcoxon signed rank statistic. Its value here is W = 9.

THE WILCOXON SIGNED RANK TEST FOR MATCHED PAIRS

Draw an SRS of size n from a population for a matched pairs study and
take the differences in responses within pairs. Rank the absolute values
of these differences. The sum W of the ranks for the positive differences
is the Wilcoxon signed rank statistic. If the distribution of the
responses is not affected by the different treatments within pairs, then
W+ has mean

B nmn+1)
Hw+ = 4
and standard deviation
_n(n+1)2n+1)
o= 24

The Wilcoxon signed rank test rejects the hypothesis that there are no
systematic differences within pairs when the rank sum W+ is far from its
mean.

USE YOUR KNOWLEDGE

15.18 Services provided by top spas. The readers’ poll in Condé Nast
Traveler magazine that ranked 36 top resort spas and that was
described in Exercise 15.1 also reported scores on Diet/Cuisine and
on Program/Facilities. Here are the scores for a random sample of 7
spas that ranked in the top 18:

Spa 1 2 3 4 5 6 7

Diet/Cuisine 90.9 92.3 88.6 81.8 857 889 81.0
Program/Facilities 93.8 923 914 950 89.2 882 381.8

Is food, expressed by the Diet/Cuisine score, more important than
activities, expressed as the Program/Facilities score, for a top rank-
ing? Formulate this question in terms of null and alternative hypothe-
ses. Then compute the differences and find the value of the Wilcoxon
signed rank statistic, WT.

15.19 Scores for lower-ranked spas. Refer to the previous exercise. Here
are the scores for a random sample of 7 spas that ranked between 19

and 36:
Spa 1 2 3 4 5 6 7
Diet/Cuisine 773 85.7 84.2 85.3 837 84.6 78.5
Program/Facilities 95.7 780 87.2 853 936 76.0 86.3

Answer the questions from the previous exercise for this setting.
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15.9 Software output. In the storytelling study of Example 15.8, n = 5. If
the null hypothesis (no systematic effect of illustrations) is true, the mean
of the signed rank statistic is

_nn+1)  (5)(6)
===, =

Our observed value W' = 9 is only slightly larger than this mean. The one-
sided P-value is P(W+ > 9).

Figure 15.7 displays the output of two statistical programs. We see from
Figure 15.7(a) that the one-sided P-value for the Wilcoxon signed rank test
with n = 5 observations and W' = 9 is P = 0.4062. This result differs from
thet testresult P = 0.280, but both tell us that this very small sample gives no
evidence that seeing illustrations improves the storytelling of low-progress
readers.

7.5

Hw+

Exact Wilcoxon Signed-Rank Test

data: Story2-Storyl
signed-rank statistic V = 9, n = 5, p-value = 0.4062

alternative hypothesis: true mu is greater than 0

(@)

Wilcoxon Signed-Rank Test

Story2-Storyl

Positive Wilcoxon Signif
N Ranks Statistic z (two-tailed)
5 2 9 .405 .686

(b)

FIGURE 15.7 Output from (a) S-PLUS and (b) SPSS for the storytelling study of Example 15.9.
S-PLUS reports the exact P-value, P = 0.4062. SPSS uses the Normal approximation without
the continuity correction and so gives a less accurate P-value, P = 0.343 (one-sided).

The Normal approximation

The distribution of the signed rank statistic when the null hypothesis (no
difference) is true becomes approximately Normal as the sample size becomes
large. We can then use Normal probability calculations (with the continuity
correction) to obtain approximate P-values for W*. Let’s see how this works
in the storytelling example, even though n =75 is certainly not a large sample.
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15.10 The Normal approximation. For n = 5 observations, we saw in Ex-
ample 15.9 that uy+ = 7.5. The standard deviation of W* under the null
hypothesis is

_n(n+1)2n+1)
W= 24

()11
- 24

=4/13.75 =3.708

The continuity correction calculates the P-value P(W* > 9) as P(W* > 8.5),
treating the value W' = 9 as occupying the interval from 8.5 to 9.5. We find
the Normal approximation for the P-value by standardizing and using the
standard Normal table:

W+-75 85-75
P(W+>85)=P ( >

3708 — 3.708
= P(Z >0.27)
— 0.394

Despite the small sample size, the Normal approximation gives a result quite
close to the exact value P = 0.4062. Figure 15.7(b) shows that the approx-

SPo imation is much less accurate without the continuity correction. This
' output reminds us not to trust software unless we know exactly what it
o
does.

USE YOUR KNOWLEDGE
NN

9
@ SPASTOP 15.20 Significance test for top-ranked spas. Refer to Exercise 15.18.
Find pw+, ow+, and the Normal approximation for the P-value for

1A £, the Wilcoxon signed rank test.
Yo

9

@ SPASNEXT 15.21 Significance test for lower-ranked spas. Refer to Exercise 15.19.
Find pw+, ow+, and the Normal approximation for the P-value for the
Wilcoxon signed rank test.

Ties

Ties among the absolute differences are handled by assigning average ranks. A
tie within a pair creates a difference of zero. Because these are neither positive
nor negative, the usual procedure simply drops such pairs from the sample.
Ay TIO’L This amounts to dropping observations that favor the null hypothesis (no differ-
' ence). If there are many ties, the test may be biased in favor of the alternative
A hypothesis. As in the case of the Wilcoxon rank sum, ties complicate finding a
P-value. Most software no longer provides an exact distribution for the signed
rank statistic W+, and the standard deviation o+ must be adjusted for the ties
before we can use the Normal approximation. Software will do this. Here is an

example.



FIGURE 15.8 Normal quantile
plot of the differences in scores for
two rounds of a golf tournament,
for Example 15.11.
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15.11 Golfscores of awomen’s golf team. Here are the golf scores of 12 mem-
bers of a college women’s golf team in two rounds of tournament play. (A golf
score is the number of strokes required to complete the course, so that low
scores are better.)

Player 1 2 3 4 5 6 7 8 9 10 11 12

Round 2 94 85 89 89 81 76 107 89 87 91 88 80
Round 1 89 90 87 95 86 81 102 105 83 88 91 79
Difference 5 -5 2 -6 -5 -5 5 -16 4 3 -3 1

Negative differences indicate better (lower) scores on the second round. We
see that 6 of the 12 golfers improved their scores. We would like to test the
hypotheses that in a large population of collegiate women golfers

Hy: Scores have the same distribution in Rounds 1 and 2.

H,: Scores are systematically lower or higher in Round 2.

A Normal quantile plot of the differences (Figure 15.8) shows some irregu-
larity and a low outlier. We will use the Wilcoxon signed rank test.
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The absolute values of the differences, with boldface indicating those that

were negative, are

55 2 6 5 5 5 16 4 3 3 1

Arrange these in increasing order and assign ranks, keeping track of which
values were originally negative. Tied values receive the average of their ranks.

6 16

Absolute value 1 5 5 5 5
8 8 8 8 11 12

2 3 3 4
Rank 1 2 5

5
3.5 35 8
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SECTION 15.2 Exercises

The Wilcoxon signed rank statistic is the sum of the ranks of the negative
differences. (We could equally well use the sum of the ranks of the positive
differences.) Its value is W+ = 50.5.

15.12 Software output. Here are the two-sided P-values for the Wilcoxon
signed rank test for the golf score data from several statistical programs:

Program  P-value

Minitab P =0.388
SAS P =0.388
S-PLUS P =0.384
SPSS P =0.363

All lead to the same practical conclusion: these data give no evidence for
a systematic change in scores between rounds. However, the P-values re-
ported differ a bit from program to program. The reason for the variations
is that the programs use slightly different versions of the approximate cal-
culations needed when ties are present. The exact result depends on which
of these variations the programmer chooses to use.

For these data, the matched pairs ¢ test givest = 0.9314 with P = 0.3716.
Once again, t and W lead to the same conclusion.

SECTION 15.2 Summary

The Wilcoxon signed rank test applies to matched pairs studies. It tests the
null hypothesis that there is no systematic difference within pairs against al-
ternatives that assert a systematic difference (either one-sided or two-sided).

The test is based on the Wilcoxon signed rank statistic W+, which is the
sum of the ranks of the positive (or negative) differences when we rank the
absolute values of the differences. The matched pairs ¢ test and the sign test
are alternative tests in this setting.

P-values for the signed rank test are based on the sampling distribution of
W+ when the null hypothesis is true. You can find P-values from special tables,
software, or a Normal approximation (with continuity correction).

For Exercises 15.18 and 15.19, see page 736, and for 15.22 Comparison of two energy drinks. Consider
Exercises 15.20 and 15.21, see page 738. the following study to compare two popular energy

drinks. For each subject, a coin was flipped to determine

Statistical software is very helpful in doing these exercises. If ~ which drink to rate first. Each drink was rated on a 0 to
you do not have access to software, base your work on the 100 scale, with 100 being the highest rating.
Normal approximation with continuity correction 1= ENERGYDRINKS6

(page 738).



Subject
Drink 1 2 3 4 5 6
A 43 83 66 87 718 67
B 45 78 64 79 71 62

(a) Inspect the data. Is there a tendency for these subjects
to prefer one of the two energy drinks?

(b) Use the matched pairs 7 test of Chapter 7 (page 424)
to compare the two drinks.

(c¢) Use the Wilcoxon signed rank test to compare the two
drinks.

(d) Write a summary of your results and explain why the
two tests give different conclusions.

15.23 Comparison of two energy drinks with an
additional subject. Refer to the previous exercise. Let’s
suppose that there is an additional subject who expresses
a strong preference for energy drink “A.” Here is the new
data set: T ENERGYDRINKS?

Subject
Drink 1 2 3 4 5 6 7
A 43 83 66 87 78 67 90
B 45 78 64 79 71 62 60

Answer the questions given in the previous exercise. Write
a summary comparing this exercise with the previous one.
Include a discussion of what you have learned regarding
the choice of the 7 test versus the Wilcoxon signed rank
test for different sets of data.

15.24 Carbon dioxide and plant growth. The
concentration of carbon dioxide (CO,) in the atmosphere
is increasing rapidly due to our use of fossil fuels. Because
plants use CO; to fuel photosynthesis, more CO, may
cause trees and other plants to grow faster. An elaborate
apparatus allows researchers to pipe extra CO; to a
30-meter circle of forest. They set up three pairs of circles
in different parts of a forest in North Carolina. One of
each pair received extra CO, for an entire growing season,
and the other received ambient air. The response variable
is the average growth in base area for trees in a circle, as a
fraction of the starting area. Here are the data for one
growing season: 12 C CO2PLANTS

Pair Control Treatment
1 0.06528 0.08150
2 0.05232 0.06334
3 0.04329 0.05936
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(a) Summarize the data. Does it appear that growth was
faster in the treated plots?

(b) The researchers used a matched pairs 7 test to see if
the data give good evidence of faster growth in the treated
plots. State hypotheses, carry out the test, and state your
conclusion.

(¢) The sample is so small that we cannot assess
Normality. To be safe, we might use the Wilcoxon signed
rank test. Carry out this test and report your result.

(d) The tests lead to very different conclusions. The
primary reason is the lack of power of rank tests for very
small samples. Explain to someone who knows no
statistics what this means.

15.25 Heart rate and exercise. A student project asked
subjects to step up and down for three minutes and
measured their heart rates before and after the exercise.
Here are data for five subjects and two treatments:
stepping at a low rate (14 steps per minute) and at a
medium rate (21 steps per minute). For each subject, we
give the resting heart rate (beats per minute) and the heart
rate at the end of the exercise.!> % HEARTEXERCISE

Low Rate Medium Rate
Subject Resting Final Resting Final
1 60 75 63 84
2 90 99 69 93
3 87 93 81 96
4 78 87 75 90
5 84 84 90 108

Does exercise at the low rate raise heart rate significantly?
State hypotheses in terms of the median increase in heart

rate and apply the Wilcoxon signed rank test. What do you
conclude?

15.26 Compare exercise at a medium rate with
exercise at a low rate. Do the data from the previous
exercise give good reason to think that stepping at the
medium rate increases heart rates more than stepping at
the low rate? C HEARTEXERCISE

(a) State hypotheses in terms of comparing the median
increases for the two treatments. What is the proper rank
test for these hypotheses?

(b) Carry out your test and state a conclusion.

15.27 The full moon and behavior. Can the full moon
influence behavior? A study observed 15 nursing-home
patients with dementia. The number of incidents of
aggressive behavior was recorded each day for 12 weeks.
Call a day a “moon day” if it is the day of a full moon or
the day before or after a full moon. Here are the average
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numbers of aggressive incidents for moon days and other
days for each subject:!* C MOONBEHAVIOR

Patient Moon days Other days
1 3.33 0.27
2 3.67 0.59
3 2.67 0.32
4 3.33 0.19
5 3.33 1.26
6 3.67 0.11
7 4.67 0.30
8 2.67 0.40
9 6.00 1.59

10 4.33 0.60
11 3.33 0.65
12 0.67 0.69
13 1.33 1.26
14 0.33 0.23
15 2.00 0.38

The matched pairs ¢ test (Example 7.7, page 414) gives
P < 0.000015 and a permutation test (Example 16.14,
page 16-48) gives P = 0.0001. Does the Wilcoxon signed
rank test, based on ranks rather than means, agree that
there is strong evidence that there are more aggressive
incidents on moon days?

15.28 A summer language institute for teachers. A
matched pairs study of the effect of a summer language
institute on the ability of teachers to comprehend spoken
French had these improvements in scores between the
pretest and the posttest for 20 teachers: C SUMMERLANGUAGE

2 0 6 6 3 3 2 3 -6 6
6 6 3 0 1 1 0 2 3 3

(Exercise 7.41, page 431, applies the ¢ test to these data;
Exercise 16.59, page 16-52, applies a permutation test
based on the means.) Show the assignment of ranks and
the calculation of the signed rank statistic W* for these
data. Remember that zeros are dropped from the data
before ranking, so that # is the number of nonzero
differences within pairs.

15.29 Radon detectors. How accurate are radon
detectors of a type sold to home owners? To answer this
question, university researchers placed 12 detectors in a
chamber that exposed them to 105 picocuries per liter
(pCi/l) of radon.! The detector readings are as follows:
T RADONDETECTORS

919 978 1114
103.8  99.6 96.6

122.3
119.3

105.4 95.0
104.8 101.7

We wonder if the median reading differs significantly
from the true value 105.

(a) Graph the data, and comment on skewness and
outliers. A rank test is appropriate.

(b) We would like to test hypotheses about the median
reading from home radon detectors:

Hy : median = 105
H, : median # 105

To do this, apply the Wilcoxon signed rank statistic to the
differences between the observations and 105. (This is the
one-sample version of the test.) What do you conclude?

15.30 Vitamin C in wheat-soy blend. The U.S. Agency
for International Development provides large quantities of
wheat-soy blend (WSB) for development programs and
emergency relief in countries throughout the world. One
study collected data on the vitamin C content of 27 bags of
WSB at the factory and five months later in Haiti. 16 Here
are the data: T WSBVITC

Sample 1 2 3 4 5
Before 73 79 86 88 78
After 20 27 29 36 17

We want to know if vitamin C has been lost during
transportation and storage. Describe what the data show
about this question. Then use a rank test to see whether
there has been a significant loss.

15.31 Weight gains with an extra 1000 calories per
day. Exercise 7.32 (page 428) presents these data on the
weight gains (in kilograms) of adults who were fed an
extra 1000 calories per day for 8 weeks:!” C WEIGHT1000

Weight

Subject before after
1 55.7 61.7
2 54.9 58.8
3 59.6 66.0
4 62.3 66.2
5 74.2 79.0
6 75.6 82.3
7 70.7 74.3
8 53.3 59.3
9 73.3 79.1
10 63.4 66.0
11 68.1 73.4
12 73.7 76.9
13 91.7 93.1
14 55.9 63.0
15 61.7 68.2
16 57.8 60.3

(a) Use arank test to test the null hypothesis that the
median weight gain is 16 pounds, as theory suggests.
What do you conclude?

(b) If your software allows, give a 95% confidence
interval for the median weight gain in the population.
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15.3 The Kruskal-Wallis Test*

We have now considered alternatives to the two-sample ¢ and matched pairs
tests for comparing the magnitude of responses to two treatments. To compare
more than two treatments, we use one-way analysis of variance (ANOVA) if the
distributions of the responses to each treatment are at least roughly Normal
and have similar spreads. What can we do when these distribution require-
ments are violated?

15.13 Weeds and corn yield. Lamb’s-quarter is a common weed that inter-
feres with the growth of corn. A researcher planted corn at the same rate
in 16 small plots of ground and then randomly assigned the plots to four
groups. He weeded the plots by hand to allow a fixed number of lamb’s-
quarter plants to grow in each meter of corn row. These numbers were 0, 1,
3, and 9 in the four groups of plots. No other weeds were allowed to grow,
and all plots received identical treatment except for the weeds. Here are the
yields of corn (bushels per acre) in each of the plots:!8

Weeds Corn Weeds Corn Weeds Corn Weeds Corn
per meter yield | per meter yield | per meter yield | per meter yield

0 166.7 1 166.2 3 158.6 9 162.8
0 172.2 1 157.3 3 176.4 9 142.4
0 165.0 1 166.7 3 153.1 9 162.7
0 176.9 1 161.1 3 156.0 9 162.4

The summary statistics are

Weeds n  Mean Std. dev.

170.200 5.422
162.825 4.469
161.025  10.493
157.575 10.118

O W= O
B

The sample standard deviations do not satisfy our rule of thumb that for
safe use of ANOVA the largest should not exceed twice the smallest. Normal
quantile plots (Figure 15.9) show that outliers are present in the yields for
three and nine weeds per meter. These are the correct yields for their plots,
so we have no justification for removing them. We may want to use a rank
test.

*Because this test is an alternative to the one-way analysis of variance F test, you should first
read Chapter 12.
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FIGURE 15.9 Normal quantile plots for the corn yields in the four treatment groups in
Example 15.183.

Hypotheses and assumptions

The ANOVA F test concerns the means of the several populations represented
by our samples. In Example 15.13, the ANOVA hypotheses are

Hy: o = p1 = 3 = o
H,: not all four means are equal

Here, 1 is the mean yield in the population of all corn planted under the con-
ditions of the experiment with no weeds present. The data should consist of
four independent random samples from the four populations, all Normally dis-
tributed with the same standard deviation.

The Kruskal-Wallis test is a rank test that can replace the ANOVA F test. The
assumption about data production (independent random samples from each
population) remains important, but we can relax the Normality assumption.
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We assume only that the response has a continuous distribution in each pop-
ulation. The hypotheses tested in our example are

Hy: Yields have the same distribution in all groups.

H,: Yields are systematically higher in some groups than in others.

If all of the population distributions have the same shape (Normal or not),
these hypotheses take a simpler form. The null hypothesis is that all four pop-
ulations have the same median yield. The alternative hypothesis is that not all
four median yields are equal.

The Kruskal-Wallis test

Recall the analysis of variance idea: we write the total observed variation in
the responses as the sum of two parts, one measuring variation among the
groups (sum of squares for groups, SSG) and one measuring variation among
individual observations within the same group (sum of squares for error, SSE).
The ANOVA F test rejects the null hypothesis that the mean responses are equal
in all groups if SSG is large relative to SSE.

The idea of the Kruskal-Wallis rank test is to rank all the responses from
all groups together and then apply one-way ANOVA to the ranks rather than
to the original observations. If there are N observations in all, the ranks are
always the whole numbers from 1 to N. The total sum of squares for the ranks
is therefore a fixed number no matter what the data are. So we do not need to
look at both SSG and SSE. Although it isn’t obvious without some unpleasant
algebra, the Kruskal-Wallis test statistic is essentially just SSG for the ranks.
We give the formula, but you should rely on software to do the arithmetic.
When SSG is large, that is evidence that the groups differ.

THE KRUSKAL-WALLIS TEST

Draw independent SRSs of sizes ny, 1y, ..., 1y from I populations. There
are N observations in all. Rank all N observations and let R; be the sum
of the ranks for the ith sample. The Kruskal-Wallis statistic is

12 R’
H=——"—— L _3(N+1
NNTD > 7 ~3WN+D

When the sample sizes #; are large and all I populations have the same
continuous distribution, H has approximately the chi-square
distribution with I — 1 degrees of freedom.

The Kruskal-Wallis test rejects the null hypothesis that all populations
have the same distribution when H is large.

We now see that, like the Wilcoxon rank sum statistic, the Kruskal-Wallis
statistic is based on the sums of the ranks for the groups we are comparing.
The more different these sums are, the stronger is the evidence that responses
are systematically larger in some groups than in others.

The exact distribution of the Kruskal-Wallis statistic H under the null
hypothesis depends on all the sample sizes n; to 1;, so tables are awkward.
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The calculation of the exact distribution is so time-consuming for all but the
smallest problems that even most statistical software uses the chi-square
approximation to obtain P-values. As usual, there is no usable exact distribu-
tion when there are ties among the responses. We again assign average ranks
to tied observations.

15.14 Perform the significance test. In Example 15.13, there are I = 4 pop-
wA L ulations and N = 16 observations. The sample sizes are equal, 7; = 4. The

9
@ WEEDSYIELD 16 observations arranged in increasing order, with their ranks, are

Yield 1424 153.1 156.0 157.3 158.6 161.1 1624 162.7
Rank 1 2 3 4 5 6 7 8

Yield 162.8 165.0 166.2 166.7 166.7 1722 1764 176.9
Rank 9 10 11 12.5 12.5 14 15 16

There is one pair of tied observations. The ranks for each of the four
treatments are

Weeds Ranks Rank sums
0 10 125 14 16 52.5
1 4 6 11 125 33.5
3 2 3 5 15 25.0
9 1 7 8 9 25.0

The Kruskal-Wallis statistic is therefore

12 R
H=— " S L _3(N+1
NNTD > 7y ~3WN+D

12 5252 3352 252 257
( — —) - (3)(17)

“Uean\ 4 TTa T4
12

= 5-5(1282.125) - 51

= 5.56

Referring to the table of chi-square critical points (Table F) with df =
3, we find that the P-value lies in the interval 0.10 < P < 0.15. This small
experiment suggests that more weeds decrease yield but does not provide
convincing evidence that weeds have an effect.

Figure 15.10 displays the output from the SAS statistical software, which
gives the results H = 5.5725 and P = 0.1344. The software makes a small
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- B

Wilcoxon Scores (Rank Sums) for Variable YIELD
Classified by Variable WEEDS

Sum of Expected Std Dev Mean
WEEDS N Scores Under HO Under HO Score
0 4 52.5000000 34.0 8.24014563 13.1250000
1 4 33.5000000 34.0 8.24014563 8.3750000
3 4 25.0000000 34.0 8.24014563 6.2500000
9 4 25.0000000 34.0 8.24014563 6.2500000

Average Scores Were Used for Ties

Kruskal-Wallis Test (Chi-Square Approximation)

CHISQ = 5.5725
DF = 3
Pr > CHISQ = 0.1344

FIGURE 15.10 Output from SAS for the Kruskal-Wallis test applied to the data in
Example 15.14. SAS uses the chi-square approximation to obtain a P-value.

adjustment for the presence of ties that accounts for the slightly larger value
of H. The adjustment makes the chi-square approximation more accurate. It
would be important if there were many ties.

As an option, SAS will calculate the exact P-value for the Kruskal-Wallis
test. The result for Example 15.14 is P = 0.1299. This result required more
than an hour of computing time. Fortunately, the chi-square approximation is
quite accurate. The ordinary ANOVA F test gives F = 1.73 with P = 0.2130.
Although the practical conclusion is the same, ANOVA and Kruskal-Wallis do
not agree closely in this example. The rank test is more reliable for these small
samples with outliers.

SECTION 15.3 Summary

The Kruskal-Wallis test compares several populations on the basis of inde-
pendent random samples from each population. This is the one-way analysis
of variance setting.

The null hypothesis for the Kruskal-Wallis test is that the distribution of the
response variable is the same in all the populations. The alternative hypothesis
is that responses are systematically larger in some populations than in others.

The Kruskal-Wallis statistic H can be viewed in two ways. It is essentially
the result of applying one-way ANOVA to the ranks of the observations. It is
also a comparison of the sums of the ranks for the several samples.

When the sample sizes are not too small and the null hypothesis is true,
H for comparing I populations has approximately the chi-square distribution
with I — 1 degrees of freedom. We use this approximate distribution to obtain
P-values.
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SECTION 15.3 Exercises

Statistical software is needed to do these exercises without
unpleasant hand calculations. If you do not have access to
software, find the Kruskal-Wallis statistic H by hand and
use the chi-square table to get approximate P-values.

15.32 Do poets die young? In Exercise 12.38 you
analyzed the age at death for female writers. They were
classified as novelists, poets, and nonfiction writers. The
data are given in Table 12.1 (page 662). @ POETS

(a) Use the Kruskal-Wallace test to compare the three
groups of female writers.

(b) Compare these results with what you find using the
ANOVA F statistic.

15.33 Do isoflavones increase bone mineral density?
In Exercise 12.39 (page 662) you investigated the effects of
isoflavones from Kudzu on bone mineral density (BMD).
The experiment randomized rats to three diets: control,
low isoflavones, and high isoflavones. Here are the data:

™ BMD

Treatment BMD (g/cm?)

Control 0.228 0.207 0.234 0.220 0.217 0.228 0.209 0.221
0.204 0.220 0.203 0.219 0.218 0.245 0.210

Lowdose 0.211 0.220 0.211 0.233 0.219 0.233 0.226 0.228
0.216 0.225 0.200 0.208 0.198 0.208 0.203

High dose 0.250 0.237 0.217 0.206 0.247 0.228 0.245 0.232
0.267 0.261 0.221 0.219 0.232 0.209 0.255

(a) Use the Kruskal-Wallace test to compare the three
diets.

(b) How do these results compare with what you find
using the ANOVA F statistic?

15.34 Vitamins in bread. Does bread lose its vitamins
when stored? Here are data on the vitamin C content
(milligrams per 100 grams of flour) in bread baked from
the same recipe and stored for 1, 3, 5, or 7 days.!° The 10
observations are from 10 different loaves of bread.

T BREAD

Condition Vitamin C (mg/100 g)
Immediately after baking  47.62 49.79
One day after baking 40.45 43.46
Three days after baking 21.25 22.34
Five days after baking 13.18 11.65
Seven days after baking 8.51 8.13

The loss of vitamin C over time is clear, but with only 2
loaves of bread for each storage time we wonder if the
differences among the groups are significant.

(a) Use the Kruskal-Wallis test to assess significance and
then write a brief summary of what the data show.

(b) Because there are only 2 observations per group, we
suspect that the common chi-square approximation to the
distribution of the Kruskal-Wallis statistic may not be
accurate. The exact P-value (from the SAS software) is

P = 0.0011. Compare this with your P-value from part (a).
Is the difference large enough to affect your conclusion?

15.35 Jumping and strong bones. Many studies
suggest that exercise causes bones to get stronger. One
study examined the effect of jumping on the bone density
of growing rats. Ten rats were assigned to each of three
treatments: a 60-centimeter “high jump,” a 30-centimeter
“low jump,” and a control group with no jumping. Here
are the bone densities (in milligrams per cubic centimeter)
after eight weeks of 10 jumps per day:20 C JUMPING

Group Bone density (mg/cm?)
Control 611 621 614 593 593
653 600 554 603 569
Low jump 635 605 638 594 599
632 631 588 607 596
Highjump 650 622 626 626 631
622 643 674 643 650

(a) The study was a randomized comparative
experiment. Outline the design of this experiment.

(b) Make side-by-side stemplots for the three groups,
with the stems lined up for easy comparison. The
distributions are a bit irregular but not strongly
non-Normal. We would usually use analysis of variance to
assess the significance of the difference in group means.

(c) Do the Kruskal-Wallis test. Explain the distinction
between the hypotheses tested by Kruskal-Wallis and
ANOVA.

(d) Write a brief statement of your findings. Include a
numerical comparison of the groups as well as your test
result.

15.36 Detecting insects in farm fields. To detect the
presence of harmful insects in farm fields, we can put up
boards covered with a sticky material and examine the
insects trapped on the boards. Which colors attract
insects best? Experimenters placed six boards of each of
four colors at random locations in a field of oats and
measured the number of cereal leaf beetles trapped. Here
are the data:2! Ta§ INSECTS

Color Insects trapped

Lemon yellow 45 59 48 46 38 47

White 21 12 14 17 13 17
Green 37 32 15 25 39 41
Blue 16 11 20 21 14 7




Because the samples are small, we will apply a
nonparametric test.

(a) What hypotheses does ANOVA test? What hypotheses
does Kruskal-Wallis test?

(b) Find the median number of beetles trapped by boards
of each color. Which colors appear more effective? Use
the Kruskal-Wallis test to see if there are significant
differences among the colors. What do you conclude?

15.37 Do the calculations by hand. Exercise 15.36
gives data on the counts of insects attracted by boards of
four different colors. Carry out the Kruskal-Wallis test by
hand, following these steps. C‘ INSECTS

(a) What are I, the #;, and N?

(b) Arrange the counts in order and assign ranks. Be
careful about ties. Find the sum of the ranks R; for each
color.

(¢) Calculate the Kruskal-Wallis statistic H. How many
degrees of freedom should you use for the chi-square
approximation to its null distribution? Use the chi-square
table to give an approximate P-value.

15.38 Logging in Borneo. In Exercise 15.15 you
compared the number of tree species in plots of land in a
tropical rainforest that had never been logged with similar
plots nearby that had been logged eight years earlier. The
researchers also counted species in plots that had been
logged just one year earlier. Here are the counts of
species: 22 @ BORNEO3

Plot type Species count

Unlogged 22 18 22 20 15 21
13 13 19 13 19 15

Logged 1 year ago 1 11 14 7 18 15
15 12 13 2 15 8

Logged 8 years ago 17 4 18 14 18 15
15 10 12
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(a) Use side-by-side stemplots to compare the
distributions of number of species per plot for the three
groups of plots. Are there features that might prevent use
of ANOVA? Also give the median number of species per
plot in the three groups.

(b) Use the Kruskal-Wallis test to compare the
distributions of species counts. State hypotheses, the test
statistic and its P-value, and your conclusions.

15.39 Heart disease and smoking. In a study of heart
disease in male federal employees, researchers classified
356 volunteer subjects according to their socioeconomic
status (SES) and their smoking habits. There were three
categories of SES: high, middle, and low. Individuals were
asked whether they were current smokers, former
smokers, or had never smokg(,i. Here are the data, as a
two-way table of counts:23 @ SMOKINGSES

SES Never (1) Former (2) Current (3)
High 68 92 51
Middle 9 21 22
Low 22 28 43

Smoking behavior is stored numerically as 1, 2, or 3 using
the codes given in the column headings above.

(a) Higher-SES people in the United States smoke less as
a group than lower-SES people. Do these data show a
relationship of this kind? Give percents that back your
statements.

(b) Apply the chi-square test to see if there is a significant
relationship between SES and smoking behavior.

(¢) The chi-square test ignores the ordering of the
responses. Use the Kruskal-Wallis test (with many ties) to
test the hypothesis that some SES classes smoke
systematically more than others.

CHAPTER 15 Exercises

15.40 Time spent studying. In Exercise 1.41 (page 26)
you compared the time spent studying by men and
women. The students in a large first-year college class
were asked how many minutes they studied on a typical
weeknight. Here are the responses of random samples of
30 women and 30 men from the class: C STUDYTIME

Women Men
180 120 180 360 240 90 120 30 90 200
120 180 120 240 170 920 45 30 120 75

150 120 180 180 150 150 120 60 240 300
200 150 180 150 180 240 60 120 60 30
120 60 120 180 180 30 230 120 95 150

90 240 180 115 120 0 200 120 120 180

(a) Summarize the data numerically and graphically.

(b) Use the Wilcoxon rank sum test to compare the men
and women. Write a short summary of your results.

(c) Use a two-sample ¢ test to compare the men and
women. Write a short summary of your results.

(d) Which procedure is more appropriate for these data?
Give reasons for your answer.

15.41 Response times for telephone repair calls.
A study examined on the time required for the telephone
company Verizon to respond to repair calls from its own



750 CHAPTER 15 Nonparametric Tests

customers and from customers of a CLEC, another phone
company that pays Verizon to use its local lines. Here

are the data, which are rounded to the nearest hour:

C TELEPHONEREPAIR

Verizon
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(a) Does Verizon appear to give CLEC customers the
same level of service as its own customers? Compare the
data using graphs and descriptive measures and express
your opinion.

(b) We would like to see if times are significantly longer
for CLEC customers than for Verizon customers. Why
would you hesitate to use a t test for this purpose? Carry
out a rank test. What can you conclude?

15.42 Selling prices of three- and four-bedroom
homes. Exercise 7.141 (page 471) reports data on

the selling prices of 14 four-bedroom houses and 23
three-bedroom houses in West Lafayette, Indiana. We
wonder if there is a difference between the average prices
of three- and four-bedroom houses in this community.
T HOUSEPRICE

(a) Make a Normal quantile plot of the prices of
three-bedroom houses. What kind of deviation from
Normality do you see?

(b) The ¢ tests are quite robust. State the hypotheses for
the proper ¢ test, carry out the test, and present your
results, including appropriate data summaries.

(¢) Carry out a nonparametric test. Once more state the
hypotheses tested and present your results for both the
test and the data summaries that should go with them.
15.43 @ Plants and hummingbirds. Different
varieties of the tropical flower Heliconia are fertilized by
different species of hummingbirds. Over time, the lengths
of the flowers and the form of the hummingbirds’ beaks
have evolved to match each other. Here are data on the
lengths in millimeters of three varieties of these flowers on
the island of Dominica:2* @ HUMMINGBIRDS

H. bihai
47.12  46.75 46.81 47.12 46.67 47.43
46.44 46.64 48.07 48.34 48.15 50.26
50.12 46.34 46.94 48.36
H. caribaea red
41.90 42.01 41.93 43.09 4147 41.69
39.78 40.57 39.63 42.18 40.66 37.87
39.16 3740 3820 38.07 38.10 37.97
38.79 38.23 3887 37.78 38.01
H. caribaea yellow
36.78 37.02 36.52 36.11 36.03 35.45
38.13  37.10 35.17 36.82 36.66 35.68
36.03 3457 34.63

Do a complete analysis that includes description of the
data and a rank test for the significance of the differences
in lengths among the three species.

Iron-deficiency anemia is the most common form of
malnutrition in developing countries. Does the type of
cooking pot affect the iron content of food? We have data
from a study in Ethiopia that measured the iron content
(milligrams per 100 grams of food) for three types of food
cooked in each of three types of pots:%> C COOKINGPOT

Type of pot Iron Content
Meat
Aluminum 1.77 236 196 2.14
Clay 227 128 248 2.68
Iron 527 517 4.06 4.22
Legumes
Aluminum 240 217 241 234
Clay 241 243 257 248
Iron 3.69 343 384 3.72
Vegetables
Aluminum 1.03 153 1.07 1.30
Clay 1.55 079 1.68 1.82
Iron 245 299 280 292

Exercises 15.44 to 15.46 use these data.

15.44 Cooking vegetables in different pots. Does the
vegetable dish vary in iron content when cooked in
aluminum, clay, and iron pots? C COOKINGPOT

(a) What do the data appear to show? Check the
conditions for one-way ANOVA. Which requirements are
a bit dubious in this setting?

(b) Instead of ANOVA, do a rank test. Summarize your
conclusions about the effect of pot material on the iron
content of the vegetable dish.



15.45 Cooking meat and legumes in aluminum and
clay pots. There appears to be little difference between
the iron content of food cooked in aluminum pots and
food cooked in clay pots. Is there a significant difference
between the iron content of meat cooked in aluminum
and clay? Is the difference between aluminum and clay
significant for legumes? Use rank tests. C' COOKINGPOT

15.46 Iron in food cooked in iron pots. The data show
that food cooked in iron pots has the highest iron content.
They also suggest that the three types of food differ in iron
content. Is there significant evidence that the three types
of food differ in iron content when all are cooked in iron
pots? {m COOKINGPOT

15.47 @ Multiple comparisons for plants and
hummingbirds. Asin ANOVA, we often want to carry
out a multiple-comparisons procedure following a
Kruskal-Wallis test to tell us which groups differ
significantly.?® Here is a simple method: If we carry out k
tests at fixed significance level 0.05/k, the probability of
any false rejection among the k tests is always no greater
than 0.05. That is, to get overall significance level 0.05 for
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all of k comparisons, do each individual comparison at the
0.05/k level. In Exercise 15.43 you found a significant
difference among the lengths of three varieties of the
flower Heliconia, Now we will explore multiple
comparisons. CHUMMINGBIRDS

(a) Write down all the pairwise comparisons we can
make, for example, bihai versus caribaea red. There are
three possible pairwise comparisons.

(b) Carry out three Wilcoxon rank sum tests, one for each
of the three pairs of flower varieties. What are the three
two-sided P-values?

(c¢) For purposes of multiple comparisons, any of these
three tests is significant if its P-value is no greater than
0.05/3 = 0.0167. Which pairs differ significantly at the
overall 0.05 level?

15.48 @ Multiple comparisons for cooking pots.
The previous exercise outlines how to use the Wilcoxon
rank sum test several times for multiple comparisons
with overall significance level 0.05 for all comparisons
together. Apply this procedure to the data used in each
of Exercises 15.44 to 15.46. & COOKINGPOT






