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1 Rational Exponents and Radicals

1.1 Rules of Exponents

The rules for exponents are the same as what you saw earlier. Memorize these rules if you haven’t already done
so.

• x0 = 1 if x 6= 0 (00 is indeterminant and is dealt with in calculus).

• Product Rule: xa · xb = xa+b.

• Quotient Rule:
xa

xb
= xa−b.

• Power Rule: (xa)b = xab.

• Product Raised to Power Rule: (xy)a = xaya.

• Quotient Raised to a Power Rule:

(
x

y

)a

=
xa

ya
if y 6= 0.

• Negative Exponent: x−a =
1

xa
, if x 6= 0.

What is new in this section is the powers a and b in our rules are extended to rational numbers, so you will be
working with quantities like (8)1/3.

1.2 Radical Notation and Rules of Radicals

If x is a nonnegative real number, then
√
x > 0 is the principal square root of x. This is because (

√
x)2 = x.

Higher order roots are defined using radical notation as: n
√
x.

In words, to evaluate the expression n
√
x = y means you are looking for a number y that when multiplied by itself

n times gives you the quantity x.

4
√

16 = 2 since (2)(2)(2)(2) = 16.

Note that is is true that (−2)(−2)(−2)(−2) = 16 but we choose +2 since we want the principal root.
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1.3 Rules of Radicals

Working with radicals is important, but looking at the rules may be a bit confusing. Here are examples to help
make the rules more concrete. The rules are fairly straightforward when everything is positive, which is most
likely what you will see in your science classes.

1. If x is a positive real number, then

• n
√
x is the nth root of x and ( n

√
x)

n
= x,(

3
√

17
)3

= 17

(
3
√

8
)3

= 8 since
3
√

8 = 2 since (2)(2)(2) = 8

• if n is a positive integer, we can write x1/n = n
√
x.

81/4 =
4
√

8

6251/4 =
4
√

625 = 5 since (5)(5)(5)(5) = 625

2. If x is a negative real number, then

• ( n
√
x)

n
= x when n is an odd integer,(
3
√
−6
)3

= −6(
3
√
−8
)3

= −8 since 3
√
−8 = −2 since (−2)(−2)(−2) = −8

• ( n
√
x)

n
is not a real number when n is an even integer.(
2
√
−6
)2

is not a real number.

This last result is because there is no real number that you can square and get a negative number.

3. For all real numbers x (including negative values)

• n
√
xn =

∣∣x∣∣ when n is an even positive integer,

4
√

(−16)4 =
∣∣− 16

∣∣ = 16 since you take fourth power first, you are removing the negative sign

2
√

(−6)2 =
2
√

36 =
2
√

62 = 6

• n
√
xn = x when n is an odd positive integer.

3
√

(−19)3 = −19

3
√

(−8)3 = 3
√

(−8)(−8)(−8) = −8
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Summary:(
n
√
x
)n

= x (when x is positive)(
n
√
x
)n

= x (when x < 0 and n odd)(
n
√
x
)n

is not real number. (when x < 0 and n even)
n
√
x = x1/n (when x is positive and n is positive integer)

n
√
xn =

∣∣x∣∣ (for all real x and n even)
n
√
xn = x (for all real x and n odd)

Product Rule for radicals: When a, b are nonnegative real numbers,

n
√
a

n
√
b =

n
√
ab,

which is really just the exponent rule ambm = (ab)m where m = 1/n.

Quotient Rule for radicals: When a, b are nonnegative real numbers (and b 6= 0),

n
√
a

n
√
b

= n

√
a

b
.

Absolute Value:
∣∣x∣∣ =

√
x2 which is just an earlier result with n = 2.

example Evaluate

(
16

81

)3/4

.

Since the radical for this expression would be

(
4

√
16

81

)3

, we should look for a way to write 16/81 as (something)4.

(
16

81

)3/4

=

((
2

3

)4
)3/4

(rewrite with number to power 4)

=

(
2

3

)4(3/4)

=

(
2

3

)3

=
23

33
=

8

27
(power rule of exponents)

Notice that writing this as

(
16

81

)3/4

=
4

√(
16

81

)3

=
4

√
4096

531441
is mathematically true, it doesn’t help us simplify.

example Simplify
√

8 +
√

50− 2
√

72.

Since we are dealing with square roots, we simplify by looking for quantities that can be written as (something)2.
√

8 +
√

50− 2
√

72 =
√

4 · 2 +
√

25 · 2− 2
√

36 · 2
=
√

22 · 2 +
√

52 · 2− 2
√

62 · 2
=
√

22
√

2 +
√

52
√

2− 2
√

62
√

2

= 2
√

2 + 5
√

2− 2 · 6
√

2

= −5
√

2
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example Common Factor x1/2 from the expression 3x2 − 2x3/2 + x1/2.

solution: I like to do common factoring with radicals by using the rules of exponents.

3x2 − 2x3/2 + x1/2 = 3x1/2+3/2 − 2x1/2+2/2 + x1/2 (rewrite exponents with a power of 1/2 in each)

= 3x1/2x3/2 − 2x1/2x2/2 + x1/2 (rules of exponents)

= 3x1/2x3/2 − 2x1/2x2/2 + x1/2 (identify common factor)

= x1/2
(

3x3/2 − 2x+ 1
)

(common factor)

example Common Factor x3/2 from the expression x9/2 − x3/2.

solution: I like to do common factoring with radicals by using the rules of exponents.

x9/2 − x3/2 = x3/2+6/2 − x3/2 (rewrite exponents with a power of 3/2 in each)

= x3/2x6/2 − x3/2 (rules of exponents)

= x3/2x6/2 − x3/2 (identify common factor)

= x3/2
(
x3 − 1

)
(common factor)

example Common Factor x1/4 from the expression x9/4 − x3/4 − 2x1/4.

x9/4 − x3/4 − 2x1/4 = x8/4+1/4 − x2/4+1/4 − 2x1/4 (rewrite exponents with a power of 1/4 in each)

= x8/4x1/4 − x2/4x1/4 − 2x1/4 (rules of exponents)

= x2x1/4 − x1/2x1/4 − 2x1/4 (identify common factor)

= x1/4
(
x2 −

√
x− 2

)
(common factor)

1.4 Rationalizing

Rationalizing something means getting rid of any radicals.

To rationalize a numerator, you want to modify the expression so as to remove any radicals from the numerator.

To rationalize a denominator, you want to modify the expression so as to remove any radicals from the denomi-
nator.

The expression a+
√
b has the conjugate expression a−

√
b, which can be useful when rationalizing a denominator

or numerator.

For example, 2−
√

43− x and 2 +
√

43− x are conjugate expressions.

To rationalize the denominator, we multiply both the numerator and denominator
by the conjugate of the denominator.

To rationalize the numerator, we multiply both the numerator and denominator by
the conjugate of the numerator.
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example Rationalize the denominator in the expression

√
x+
√
y

√
x− 2

√
y

.

To rationalize the denominator, we multiply both the numerator and denominator by the conjugate of the de-
nominator

√
x+
√
y

√
x− 2

√
y

=

√
x+
√
y

√
x− 2

√
y
·
√
x + 2

√
y

√
x + 2

√
y

=
(
√
x+
√
y)(
√
x+ 2

√
y)

(
√
x− 2

√
y)(
√
x+ 2

√
y)

=
x+ 3

√
x
√
y + 2y

x− 4y

We could also rationalize the numerator by multiplying both the numerator and denominator by the conjugate
of the numerator.

√
x+
√
y

√
x− 2

√
y

=

√
x+
√
y

√
x− 2

√
y
·
√
x−√y
√
x−√y

=
(
√
x+
√
y)(
√
x−√y)

(
√
x− 2

√
y)(
√
x−√y)

=
x− y

x− 3
√
x
√
y + 2y

Some textbooks will say “If an expression contains a square root in the denominator, it is not considered simpli-
fied.” I consider this statement crap. The problem is, what do we mean by simplified? Sometimes we may want
to get rid of radicals in the denominator, but sometimes we may want to get rid of radicals in the numerator. To
say one is more simplified than the other is completely misguided, in my opinion.

Simplification: To simplify an expression may mean different things in different
situations. I view something as simplified if it is in a form that makes the next thing you
want to do with it easier. Do you want to sketch a function? Look for roots? Find a
numeric value? Substitute it into something else? Depending on what you want to do,
you may want slightly different forms.

Your goal is to become proficient with the algebraic techniques of simplifica-
tion (rationalizing numerator, rationalizing denominator, finding a common
denominator, factoring, etc), so you can easily do whatever simplification is
required.
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example Rationalize the denominator in the expression
x
4
√
x

so the denominator is x.

solution: This one is a little bit different than the previous examples, since the denominator we wish to
rationalize has only one term.

What we need to do here is multiply both the numerator and denominator of the expression by something that
will make the denominator x (since this is a rationalized denominator).

To figure out what that something is, we can do the following:

4
√
xw = x (where w is the something we want to find)

w =
x
4
√
x

(division principle)

=
x

x1/4
(rules of radicals)

= x1−1/4 (rules of exponents)

= x3/4

Notice how similar this is to what we did when doing polynomial long division when fractions arose!

Now we can create an equivalent expression:

x
4
√
x

=
x · x3/4

4
√
x · x3/4

=
x1+3/4

x1/4x3/4

=
x7/4

x1/4+3/4
=
x7/4

x
(equivalent expression with rationalized denominator)

example Rationalize the denominator in the expression
x
4
√
x

.

solution: If you don’t require that the denominator must be x, just use the rules of exponents to simplify:

x
4
√
x

=
x

x1/4
= x1−1/4 = x3/4 =

x3/4

1
(denominator is rationalized to 1)

example Find a common denominator for the expression
13

x1/2
− 2

x7/2
.

solution: The process of finding a common denominator is exactly the same as before, only the fractional
powers means we have to be a bit careful when finding LCD.

The LCD would be x7/2, since x7/2 = x6/2+1/2 = x3+1/2 = x3x1/2.

13

x1/2
− 2

x7/2
=

13 · x3

x1/2 · x3 −
2

x7/2
(give first term same denominator as second term)

=
13x3

x7/2
− 2

x7/2
(rules of exponents)

=
13x3 − 2

x7/2
(since a/d+ b/d = (a+ b)/d)

If you wanted to, you could rationalize the denominator now.
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example Solve the equation −2x9/2 + 7x7/2 − 3x5/2 = 0.

solution: When you first see this question it looks very challenging, but let’s think it through using all the tools
we have learned so far.

First, we can’t “isolate an x” to solve the equation like we did back in Unit 3 since the equation is not linear in x.

We have also seen that we can solve quadratic equations by factoring in Unit 7, but this equation is not quadratic
in x. But the equation has three terms so it kind of looks like this type.

In this Unit, we have seen how to work with fractional exponents, so let’s try to factor out the smallest fractional
power of x and see what happens. In this case the smallest power of x would be x5/2.

−2x9/2 + 7x7/2 − 3x5/2 = 0 (original equation)

−2x4/2+5/2 + 7x2/2+5/2 − 3x5/2 = 0 (rules of exponents)

−2x2 · x5/2 + 7x · x5/2 − 3 · x5/2 = 0 (identify common factor)

x5/2
(
− 2x2 + 7x− 3

)
= 0 (common factor)

Notice we now have a quadratic to factor, which we can do using the Grouping Method from Unit 7.

Two numbers who product is (−2)(−3) = 6 and sum is 7: 1,6.

−2x2 + 7x− 3 = −2x2 + 6x+ 1x− 3

= −2x(x− 3) + 1(x− 3)

= (−2x+ 1)(x− 3)

Our equation now becomes

x5/2(−2x+ 1)(x− 3) = 0 (factored form of original equation)

which can be solved using the Zero Factor Property from Unit 7.

x5/2 = 0 ⇒ x = 0

(−2x+ 1) = 0 ⇒ x = 1/2

(x− 3) = 0 ⇒ x = 3

So there are three solutions to −2x9/2 + 7x7/2 − 3x5/2 = 0, x = 0, 1/2, 3.
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2 The Square Root Function

The square root function is defined as f(x) =
√
x.

Domain: The quantity under the square root must be positive or zero, so x ≥ 0 or x ∈ [0,∞).

Range: y ≥ 0 or y ∈ [0,∞).

f(−1) =
√
−1 not a real number x = −1 is not in domain, no ordered pair

f(0) =
√

0 = 0 ⇒ ordered pair is (0, 0)

f(1) =
√

1 = 1 ⇒ ordered pair is (1, 1)

f(2) =
√

2 ⇒ ordered pair is (2,
√

2)

f(3) =
√

3 ⇒ ordered pair is (3,
√

3)

f(4) =
√

4 = 2 ⇒ ordered pair is (4, 2)

f(5) =
√

5 ⇒ ordered pair is (5,
√

5)

f(6) =
√

6 ⇒ ordered pair is (6,
√

6)

Here is a plot of the points we have just found for the function. The line represents the other ordered pairs that
we did not compute.

2 4 6 8
x

2

4

6

8

y = x

For more general square root functions, use the following ideas to get domain/range:

Domain: The quantity under the square root must be positive or zero.

Range: depends on the specific form of the square root function, and is usually found from looking at the sketch
of the function.



Unit 10 Rational Exponents and Radicals Lecture Notes
Introductory Algebra Page 9 of 11

example You are given the function f(x) =
√
x− 2.

What is the value of this function at x = 0, x = 2, x = 3, x = 6, x = 11, and x = 18?

What is the domain of the function?

f(x) =
√
x− 2

f(0) =
√

0− 2 =
√
−2 not a real number x = 0 is not in domain, no ordered pair

f(2) =
√

2− 2 =
√

0 = 0 ⇒ ordered pair is (2, 0)

f(3) =
√

3− 2 =
√

1 = 1 ⇒ ordered pair is (3, 1)

f(6) =
√

6− 2 =
√

4 = 2 ⇒ ordered pair is (6, 2)

f(11) =
√

11− 2 =
√

9 = 3 ⇒ ordered pair is (11, 3)

f(18) =
√

18− 2 =
√

16 = 4 ⇒ ordered pair is (18, 4)

For the domain of the function, we note that square root function is real valued only if the quantity you are
taking the square root of is nonnegative (sometimes shortened incorrectly to “you can’t take the square root of a
negative”), so we must have

x− 2 ≥ 0

x ≥ 2

which means the domain is x ≥ 2. We will get a real number out of our function if we put real numbers x into
the function that satisfy x ≥ 2. Here is a plot of the function f(x) =

√
x− 2 and the points we found.

5 10 15 20
x

2
4
6
8

y = x - 2

example What is the domain of the function f(x) =
√

2− 3x?

2− 3x ≥ 0 (quantity under square root must be positive or zero)

�2− 3x− �2 ≥ 0− 2 (addition principle)

��−3x

��−3
≤ −2

−3
(division principle, change direction since dividing by negative)

x ≤ 2

3
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example What is the domain of the function f(x) =
√

45x− 7?

45x− 7 ≥ 0 (quantity under square root must be positive or zero)

45x− �7 + �7 ≥ 0 + 7 (addition principle)

��45x

��45
≥ 7

45
(division principle)

x ≥ 7

45

example What is the domain of the function f(x) =
√

12− 1
3
x?

12− 1

3
x ≥ 0 (quantity under square root must be positive or zero)

��12− 1

3
x−��12 ≥ 0− 12 (addition principle)

�
�
�−1

3
x×���(−3) ≤ (−12)×(−3) (division principle, change direction since dividing by negative)

x ≤ 36

example What is the domain of the function f(x) =
√
−3x?

−3x ≥ 0 (quantity under square root must be positive or zero)

��−3x

��−3
≤ 0

−3
(division principle, change direction since dividing by negative)

x ≤ 0

example What is the domain of the function f(x) =
√

34x+ 57?

34x+ 57 ≥ 0 (quantity under square root must be positive or zero)

34x+��57−��57 ≥ 0− 57 (addition principle)

��34x

��34
≥ −57

34
(division principle)

x ≥ 57

34

example What is the domain of the function f(x) =
√
−3x− 7?

−3x− 7 ≥ 0 (quantity under square root must be positive or zero)

−3x− �7 + �7 ≥ 0 + 7 (addition principle)

��−3x

��−3
≥ 7

−3
(division principle, change direction since dividing by negative)

x ≥ −7

3
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3 For Your Information: Applications involving the square root

Electric Current. We can approximate the amount of current in amps I drawn by an appliance in the home
using the formula

I =

√
P

R

where P is the power measured in watts and R is the resistance measured in ohms.

Period of a Pendulum. The period of the pendulum is the amount of time T it takes to complete one full
swing back and forth. If T is measured in seconds, and the length of the pendulum is L in feet, then the period
is given by the formula

T = 2π

√
L

32
.

A big part of precalculus is studying the behavior of functions. You will see a lot more about functions there
(polynomial functions, rational functions, squaring functions, cubing functions, exponential functions, logarithmic
functions, etc.).

Radicals and Factoring. You might have noticed that there is a relationship between radicals and factoring
that works in some cases.

For example, what if we wanted to figure out how to simplify y =
(
16
81

)1/4
? Here’s something we could do.

y =

(
16

81

)1/4

y4 =

[(
16

81

)1/4
]4

(fourth power of both sides to remove fractional exponent)

y4 =
16

81
(simplify)

81y4 = 16

81y4 − 16 = 0 (identify as a difference of squares)(
9y2
)2 − (4)2 = 0(

9y2 + 4
) (

9y2 − 4
)

= 0 (first factor is prime; second is a difference of squares)(
9y2 + 4

) (
(3y)2 − 22

)
= 0(

9y2 + 4
)

(3y − 2) (3y + 2) = 0

Now the zero factor property tells us either 9y2 + 4 = 0 (which is not possible for y a real number), or 3y− 2 = 0
(y = 2/3), or 3y + 2 = 0 (y = −2/3). We choose the positive solution since we want the principal root. So
y = 2/3.

All the above is mathematically correct, but it is obviously easier to just do the following:(
16

81

)1/4

=

((
2

3

)4
)1/4

=
2

3
.
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