## Questions

1. From the plot of the relation, determine the domain and range. Is the relation a function? Explain why or why not.

2. From the plot of the relation, determine the domain and range. Is the relation a function? Explain why or why not.

3. From the plot of the relation, determine the domain and range. Is the relation a function? Explain why or why not.

4. From the plot of the relation, determine the domain and range. Is the relation a function? Explain why or why not.

5. From the plot of the relation, determine the domain and range. Is the relation a function? Explain why or why not.

6. From the plot of the relation, determine the domain and range. Is the relation a function? Explain why or why not.

7. From the plot of the relation, determine the domain and range. Is the relation a function? Explain why or why not.

8. Given the relation $y=\frac{x}{3}-\frac{1}{2}$, determine the ordered pairs associated with $x=-3, x=-2$, $x=-3 / 2, x=0, x=1$, and $x=2$.
Sketch the ordered pairs and determine a line which represents all the ordered pairs in the relation.
What is the domain and range for the relation?
Is the relation a function? Explain your answer.
9. Given the relation $y=14-\frac{x^{2}}{2}$, determine the ordered pairs associated with $x=-3, x=-2$, $x=-3 / 2, x=0, x=1$, and $x=2, x=7 / 2$.
Sketch the ordered pairs and determine a line which represents all the ordered pairs in the relation.
What is the domain and range for the relation?
Is the relation a function? Explain your answer.
10. Given the relation $\frac{y^{2}}{4}=9-x$, determine the ordered pairs associated with $y=-6, y=-4$, $y=-2, y=0, y=2, y=4, y=6$.
Sketch the ordered pairs and determine a line which represents all the ordered pairs in the relation.
What is the domain and range for the relation? Is the relation a function? Explain your answer.
11. Given the relation $\frac{1}{3}|2 x|=y$, determine the ordered pairs associated with $x=-3, x=-2$, $x=-1, x=0, x=1, x=2, x=3$.
Sketch the ordered pairs and determine a line which represents all the ordered pairs in the relation.

What is the domain and range for the relation?
Is the relation a function? Explain your answer.
12. Determine the domain for the rational function

$$
f(x)=\frac{1}{x} .
$$

13. Determine the domain for the rational function

$$
f(x)=\frac{x-1}{(3 x+1)(4 x+2)(5 x-6)} .
$$

14. Determine the domain for the rational function

$$
f(x)=\frac{1}{9 x^{2}+12 x+4} .
$$

15. Determine the domain for the rational function

$$
f(x)=\frac{x}{-12 x^{2}+4 x+8} .
$$

16. Evaluate the function

$$
f(x)=\frac{x}{-12 x^{2}+4 x+8}
$$

at $x=\frac{1}{2}$.
17. Evaluate the function

$$
f(x)=\frac{x}{x^{2}-9}
$$

at $x=\frac{7}{3}$.
18. Evaluate the function

$$
f(x)=4 x^{2}+2
$$

at $x=3+h$ and simplify as much as possible.

## Solutions

1. Domain: $x \in\{-3,0,3,4\}$

Range: $y \in\{1,2,3,4\}$
This relation is not a function since the $x$ value $x=3$ has two outputs, $y=3$ and $y=4$.
2. Domain: $x \in\{-3,0,2,3,4\}$

Range: $y \in\{-4,-3,-1,2,4\}$
This relation is a function since all the $x$ values correspond to only one output $y$.
3. Domain: $-2 \leq x \leq 2$

Range: $-4 \leq y \leq 4$
This relation is not a function since the curve fails the vertical line test.
4. Domain: $-5 \leq x \leq 5$

Range: $-3.7 \leq y \leq 2$. Note the left endpoint of the interval is estimated from the graph.
This relation is not a function since the curve fails the vertical line test (look near $x=4$ ).
5. Domain: $1 \leq x \leq 3$. Remember filled dots mean the point is included.

Range: $1 \leq y \leq 2$.
This relation is a function since the curve passes the vertical line test.
6. Domain: $1 \leq x<3$. Remember open dots mean the point is not included.

Range: $1 \leq y \leq 4$. From the graph it looks like the line gets as high as $y=$, but this is an estimate.
This relation is a function since the curve passes the vertical line test.
7. Domain: Remember open dots mean the point is not included. This is best shown using interval notation.
$x \in[0,1) \cup(1,2) \cup(2,3) \cup(3,4]$
Range: $0 \leq y<3$.
This relation is a function since the curve passes the vertical line test.
8. This is a function since we can write $y=f(x)=\frac{x}{3}-\frac{1}{2}$.

$$
\begin{array}{rlrl}
f(-\mathbf{3}) & =\frac{-\mathbf{3}}{3}-\frac{1}{2}=-1-\frac{1}{2}=-\frac{3}{2} & & \Rightarrow \\
f(-\mathbf{2}) & =\frac{-\mathbf{2}}{3}-\frac{1}{2}=-\frac{4}{6}-\frac{3}{6}=-\frac{7}{6} & & \text { ordered pair is }(-3,-3 / 2) \\
f(-\mathbf{3 / 2}) & =\frac{-\mathbf{3} / \mathbf{2}}{3}-\frac{1}{2}=-\frac{1}{2}-\frac{1}{2}=-1 & & \\
f(\mathbf{0}) & =\frac{\mathbf{0}}{3}-\frac{1}{2}=0-\frac{1}{2}=-\frac{1}{2} & & \Rightarrow \\
f(\mathbf{1}) & =\frac{\mathbf{1}}{3}-\frac{1}{2}=\frac{2}{6}-\frac{3}{6}=-\frac{1}{6} & & \text { ordered pair is }(-2,-7 / 6) \\
f(\mathbf{2}) & =\frac{\mathbf{2}}{3}-\frac{1}{2}=\frac{4}{6}-\frac{3}{6}=\frac{1}{6} & & \\
\hline
\end{array}
$$


9. This is a function since we can write $y=f(x)=14-\frac{x^{2}}{2}$.

$$
\begin{aligned}
f(-\mathbf{3}) & =14-\frac{(-3)^{2}}{2}=\frac{28}{2}-\frac{9}{2}=\frac{17}{2} \sim 8.5 & & \text { ordered pair is }(-3,17 / 2) \\
f(-\mathbf{2}) & =14-\frac{(-2)^{2}}{2}=\frac{28}{2}-\frac{4}{2}=\frac{24}{2}=12 & & \\
f(-\mathbf{3} / \mathbf{2}) & =14-\frac{(-3 / 2)^{2}}{2}=\frac{112}{8}-\frac{9}{8}=\frac{103}{8} \sim 12.875 & & \Rightarrow
\end{aligned} \begin{array}{ll}
\text { ordered pair is }(-2,12) \\
f(\mathbf{0}) & =14-\frac{(\mathbf{0})^{2}}{2}=14-\frac{0}{2}=14 \\
f(\mathbf{1}) & =14-\frac{(\mathbf{1})^{2}}{2}=\frac{28}{2}-\frac{1}{2}=\frac{27}{2} \sim 13.5 \\
f(\mathbf{2}) & =14-\frac{(\mathbf{2})^{2}}{2}=14-2=12 \\
f(\mathbf{7} / \mathbf{2}) & =14-\frac{(\mathbf{7 / 2})^{2}}{2}=\frac{112}{8}-\frac{49}{8}=\frac{63}{8} \sim 7.875
\end{array}
$$


10. This is not a function since we can write $y=f(x)$ and get the entire curve. We can solve for $x=9-\frac{y^{2}}{4}$. This problem was chosen specifically since it is not a function but we can still get ordered pairs.

$$
\begin{array}{lll}
y=-6 \text { then } x=9-\frac{(-\mathbf{6})^{2}}{4}=9-9=0 & \Rightarrow & \text { ordered pair is }(0,-6) \\
y=-4 \text { then } x=9-\frac{(-4)^{2}}{4}=9-4=5 & \Rightarrow & \text { ordered pair is }(5,-4) \\
y=-2 \text { then } x=9-\frac{(\mathbf{- 2})^{2}}{4}=9-1=8 & \Rightarrow & \text { ordered pair is }(8,-2) \\
y=0 \text { then } x=9-\frac{(\mathbf{0})^{2}}{4}=9-0=9 & \Rightarrow & \text { ordered pair is }(9,0) \\
y=2 \text { then } x=9-\frac{(\mathbf{2})^{2}}{4}=9-1=8 & \Rightarrow & \text { ordered pair is }(8,2) \\
y=4 \text { then } x=9-\frac{(4)^{2}}{4}=9-4=5 & \Rightarrow & \text { ordered pair is }(5,4) \\
y=6 \text { then } x=9-\frac{(\mathbf{6})^{2}}{4}=9-9=0 & \Rightarrow & \text { ordered pair is }(0,6)
\end{array}
$$


11. This is a function since we can write $y=f(x)=\frac{1}{3}|2 x|$.

$$
\begin{array}{rlrl}
f(-\mathbf{3}) & =\frac{1}{3}|2(-\mathbf{3})|=\frac{1}{3}|-6|=\frac{1}{3}(6)=2 & & \\
f(-\mathbf{2}) & =\frac{1}{3}|2(-\mathbf{2})|=\frac{1}{3}|-4|=\frac{1}{3}(4)=\frac{4}{3} & & \text { ordered pair is }(-3,2) \\
f(-\mathbf{1}) & =\frac{1}{3}|2(-\mathbf{1})|=\frac{1}{3}|-2|=\frac{1}{3}(2)=\frac{2}{3} & & \\
f(\mathbf{0}) & =\frac{1}{3}|2(0)|=\frac{1}{3}|0|=\frac{1}{3}(0)=0 & & \text { ordered pair is }(-2,4 / 3) \\
f(\mathbf{1}) & =\frac{1}{3}|2(\mathbf{1})|=\frac{1}{3}|2|=\frac{1}{3}(2)=\frac{2}{3} & & \\
\text { ordered pair is }(-1,2 / 3) \\
f(\mathbf{2}) & =\frac{1}{3}|2(\mathbf{2})|=\frac{1}{3}|4|=\frac{1}{3}(4)=\frac{4}{3} & & \\
f(\mathbf{3}) & =\frac{1}{3}|2(\mathbf{3})|=\frac{1}{3}|6|=\frac{1}{3}(6)=2 & & \\
& \Rightarrow & \text { ordered pair is }(0,0) \\
& \Rightarrow & & \text { ordered pair is }(1,2 / 3) \\
& & \Rightarrow & \\
\text { ordered pair is }(2,4 / 3) \\
& & &
\end{array}
$$


12. Domain of rational function is all $x$ where the denominator it not equal to zero, so $x \neq 0$. Interval notation: $x \in(-\infty, 0) \cup(0, \infty)$.
13. Domain of rational function is all $x$ where the denominator it not equal to zero, so solve

$$
\begin{array}{llll}
(3 x+1)(4 x+2)(5 x-6)=0 & & \\
3 x+1=0 & \text { or } \quad 4 x+2=0 \quad \text { or } \quad 5 x-6=0 & \text { (zero factor property) } \\
x=-1 / 3 \quad \text { or } \quad x=-2 \quad \text { or } \quad x=6 / 5 & \text { (solve) }
\end{array}
$$

So domain is all $x$ except $x=-1 / 3, x=-2, x=6 / 5$.
Interval notation: $x \in(-\infty,-2) \cup\left(-2,-\frac{1}{3}\right) \cup\left(-\frac{1}{3}, \frac{6}{5}\right) \cup\left(\frac{6}{5}, \infty\right)$.
14. We need to factor the denominator.

Two numbers whose product is 36 and sum is $12: 6,6$.

$$
\begin{array}{rlrl}
9 x^{2}+\mathbf{1 2 x}+4 & =9 x^{2}+\mathbf{6 x}+\mathbf{6 x}+4 & & \text { (rewrite middle term) } \\
& =\left(9 x^{2}+6 x\right)+(6 x+4) & & \text { (factor) } \\
& =3 x(\mathbf{3 x}+\mathbf{2})+2(\mathbf{3 x}+\mathbf{2}) & & \text { (factor) } \\
& =(3 x+2)(\mathbf{3 x}+\mathbf{2}) & & \\
& =(3 x+2)^{2} &
\end{array}
$$

So the denominator is a perfect square! I missed that.
So domain should exclude $3 x+2=0$ to avoid division by zero, which is $x=-2 / 3$.
Interval notation: $x \in(-\infty,-2 / 3) \cup(-2 / 3, \infty)$.
15. We need to factor the denominator, $-12 x^{2}+4 x+8=4\left(-3 x^{2}+x+2\right)$.

Two numbers whose product is -6 and sum is 1 : $3,-2$.

$$
\begin{array}{rlrl}
-12 x^{2}+4 x+8 & =-4\left(-3 x^{2}+\boldsymbol{x}+2\right) & & \\
& =4\left(-3 x^{2}+\mathbf{3 x}-\mathbf{2 x}+2\right) & & \text { (rewrite middle term) } \\
& =4\left(\left(-3 x^{2}+3 x\right)+(-2 x+2)\right) & & \text { (factor) } \\
& =4(3 x(-x+1)+2(-x+1)) & & \text { (factor) } \\
& =4((3 x+2)(-x+1)) & & \\
& =4(3 x+2)(1-x) &
\end{array}
$$

So domain should exclude $3 x+2=0$ and $1-x=0$ to avoid division by zero, which is $x=-2 / 3,1$.
Interval notation: $x \in(-\infty,-2 / 3) \cup(-2 / 3,1) \cup(1, \infty)$.
16.

$$
f(\mathbf{1} / \mathbf{2})=\frac{(1 / 2)}{-12(\mathbf{1} / 2)^{2}+4(\mathbf{1} / \mathbf{2})+8}=\frac{(1 / 2)}{-3+2+8}=\frac{(1 / 2)}{7}=\frac{1}{2} \cdot \frac{1}{7}=\frac{1}{14}
$$

17. 

$$
f(7 / 3)=\frac{(7 / 3)}{(7 / 3)^{2}-9}=\frac{(7 / 3)}{49 / 9-81 / 9}=\frac{(7 / 3)}{(-32 / 9}=\frac{7}{3} \cdot\left(-\frac{9}{32}\right)=-\frac{21}{32}
$$

18. This is an important type of evaluation you will see more of with average rate of change of a function over an interval.

$$
\begin{aligned}
f(\mathbf{3}+\boldsymbol{h}) & =4(\mathbf{3}+\boldsymbol{h})^{2}+2 & & \text { (functional evaluation) } \\
& =4\left(\mathbf{9}+\mathbf{6} \boldsymbol{h}+\boldsymbol{h}^{\mathbf{2}}\right)+2 & & \text { (expand the square) } \\
& =36+24 h+4 h^{2}+2 & & \text { (distribute the 4) } \\
& =38+24 h+4 h^{2} & & \text { (collect like terms) }
\end{aligned}
$$

