Questions

1. Solve for x when $\frac{2}{3}x = \frac{1}{15}x + \frac{3}{5}$.

2. Solve for x when $\frac{x}{2} + \frac{x}{5} = \frac{7}{10}$.

3. Solve for x when $20 - \frac{1}{3}x = \frac{1}{2}x$.

4. Is 4 a solution to $\frac{1}{2}(y-2)+2=\frac{3}{8}(3y-4)$?

5. Solve for x when 0.3x - 0.2(3 - 5x) = -0.5(x - 6).

6. Solve for x when $\frac{4}{5}x - \frac{2}{3} = \frac{3x+1}{2}$.

7. Solve for x when $\frac{4}{7}x + \frac{1}{3} = \frac{3x-2}{14}$.

8. Solve for x when -1 + 5(x - 2) = 12x + 3 - 7x.

9. Solve for x when 9(x+3) - 6 = 24 - 2x - 3 + 11x.

Solutions

1. The LCD (lowest common denominator) is 15, so multiply the equation by 15 to remove the fractions.

$$\frac{2}{3}x = \frac{1}{15}x + \frac{3}{5}$$

$$15 \cdot \left(\frac{2}{3}x\right) = 15 \cdot \left(\frac{1}{15}x + \frac{3}{5}\right)$$

$$10x = 15 \cdot \frac{1}{15}x + 15 \cdot \frac{3}{5} \text{ distribute!}$$

$$10x = x + 9 \text{ simplify}$$

$$10x - x = x + 9 - x \text{ addition principle}$$

$$9x = 9 \text{ simplify}$$

$$\frac{1}{9} \cdot 9x = \frac{1}{9} \cdot 9 \text{ multiplication principle}$$

$$x = 1 \text{ simplify}$$

$$20 - \frac{1}{3}x = \frac{1}{2}x$$

$$6 \cdot \left(20 - \frac{1}{3}x\right) = 6 \cdot \frac{1}{2}x$$

$$6 \cdot 20 - 6 \cdot \frac{1}{3}x = 3x$$

$$120 - 2x = 3x$$

$$120 - 2x + 2x = 3x + 2x$$

$$120 = 5x$$

$$\frac{1}{5} \cdot 120 = \frac{1}{5} \cdot 5x$$

$$24 = x$$

2. LCD is 10.

$$\frac{x}{2} + \frac{x}{5} = \frac{7}{10}$$

$$10 \cdot \left(\frac{x}{2} + \frac{x}{5}\right) = 10 \cdot \frac{7}{10}$$

$$10 \cdot \frac{x}{2} + 10 \cdot \frac{x}{5} = 7$$

$$5x + 2x = 7$$

$$7x = 7$$

$$\frac{1}{7} \cdot 7x = \frac{1}{7} \cdot 7$$

$$x = 1$$

4. You could substitute y = 4 to check, but I am going to **7.** LCD is 42. solve it instead. LCD is 8.

$$\frac{1}{2}(y-2) + 2 = \frac{3}{8}(3y-4)$$

$$8 \cdot \left(\frac{1}{2}(y-2) + 2\right) = 8 \cdot \frac{3}{8}(3y-4)$$

$$8 \cdot \frac{1}{2}(y-2) + 8 \cdot 2 = 3(3y-4)$$

$$4(y-2) + 16 = 9y - 12$$

$$4y - 8 + 16 = 9y - 12$$

$$4y + 8 = 9y - 12$$

$$4y + 8 - 9y - 8 = 9y - 12 - 9y - 8$$

$$-5y = -20$$

$$\frac{1}{-5} \cdot (-5y) = \frac{1}{-5} \cdot (-20)$$

$$y = 4$$

$$\frac{4}{7}x + \frac{1}{3} = \frac{3x - 2}{14}$$

$$\frac{4}{7}x + \frac{1}{3} = \frac{1}{14}(3x - 2)$$

$$42 \cdot \left(\frac{4}{7}x + \frac{1}{3}\right) = 42 \cdot \frac{1}{14}(3x - 2)$$

$$42 \cdot \frac{4}{7}x + 42 \cdot \frac{1}{3} = 3(3x - 2)$$

$$24x + 14 = 3(3x - 2)$$

$$24x + 14 = 9x - 6$$

$$24x + 14 - 9x - 14 = 9x - 6 - 9x - 14$$

$$15x = -20$$

$$\frac{1}{15} \cdot 15x = \frac{1}{15} \cdot (-20)$$

$$x = -\frac{20}{15} = -\frac{4}{3}$$

5.

$$0.3x - 0.2(3 - 5x) = -0.5(x - 6)$$

$$0.3x - 0.6 + x = -0.5x + 3$$

$$1.3x - 0.6 = -0.5x + 3$$

$$1.3x - 0.6 + 0.5x + 0.6 = -0.5x + 3 + 0.5x + 0.6$$

$$1.8x = 3.6$$

$$\frac{1}{1.8} \cdot 1.8x = \frac{1}{1.8} \cdot 3.6$$

$$x = 2$$

6. LCD is 30.

$$\frac{4}{5}x - \frac{2}{3} = \frac{3x+1}{2}$$
$$30 \cdot \left(\frac{4}{5}x - \frac{2}{3}\right) = 30 \cdot \frac{3x+1}{2}$$
$$30 \cdot \frac{4}{5}x - 30 \cdot \frac{2}{3} = 30 \cdot \frac{1}{2} \cdot (3x+1)$$

Note in above I wrote $\frac{3x+1}{2}$ as $\frac{1}{2} \cdot (3x+1)$. Doing this helps reduce errors!

$$24x - 20 = 15 \cdot (3x + 1)$$

$$24x - 20 = 45x + 15$$

$$24x - 20 - 45x + 20 = 45x + 15 - 45x + 20$$

$$-21x = 35$$

$$\frac{1}{-21} \cdot (-21x) = \frac{1}{-21} \cdot 35$$

$$x = -\frac{35}{21} = -\frac{5}{3}$$

8.

$$-1 + 5(x - 2) = 12x + 3 - 7x$$
$$-1 + 5x - 10 = 5x + 3$$
$$5x - 9 - 5x = 5x + 3 - 5x$$
$$-9 = 3$$

We have to interpret what we have found. Since -9 never equals 3, the equation is never true no matter what value of x we put in. This means the equation has no solution.

9.

$$9(x+3) - 6 = 24 - 2x - 3 + 11x$$

$$9x + 27 - 6 = 21 + 9x$$

$$9x + 21 = 21 + 9x$$

$$9x + 21 - 9x = 21 + 9x - 9x$$

$$21 = 21$$

We have to interpret what we have found. Since 21 is always equal to 21, the equation is true for any value of x that we try. Therefore, there are an infinite number of solutions.