Instructions: For each group (groups are separated by horizontal lines), match term or quantity in left column to descriptions that apply from the numbered columns. There may be more than one match that is possible, and you might not use all the numbered items in each group. The last group is just True/False.

```
transit routes in a city over streets 1
mailboxes on houses and sidewalks 1
mail dropboxes (where mail is picked up by carrier)
and streets
                    2
```

1. the important aspect of the network is along the route (edges)
2. the important aspect of the network is finding the best way to visit all the points of interest (vertices)
parking meters and sidewalks (walking parking patrol) \qquad
cities and highways that connect them $\quad 2$ 2
parking meters and streets (parking patrol with a vehicle) 1
flower gardens with benches \qquad 1 snow removal on streets \qquad 1
cities and flight paths that connect them \qquad

	1. the best method for solving a problem
	2. where edges end in a graph
graph 6	3. the number of edges in a graph
vertex	4. the number of vertices in a graph
edge 5	5. connecting links joining vertices
valence 9	6. a finite collection of edges and vertices
path 7	7. connected series of edges showing a route on the graph
circuit 12	8. every pair of vertices has a path connecting them
connected graph 8	9. the number of edges entering a vertex
euler circuit 10	10. a circuit that covers every edge in a graph only once
optimal solution 1	11. adding edges to a graph to make all valences even
	12. connected series of edges showing a route on the graph that begins and ends at the same vertex

2. This graph is connected .. T F
3. This graph has an euler circuit... F
4. This graph has a circuit 4,5,1,2,3,6,5,4 (listing vertices traveled) . . T F
5. This graph has a path $4,5,1,2,3 \ldots \ldots$. F
6. It is impossible to create an euler circuit if you start at vertex $1 \ldots \mathrm{~T}$ F
7. This graph has a path $5,4,1,2,3 \ldots . . \mathrm{m} \mathrm{F}$
8. The circuit $5,6,5,2,6,3,2,1,4,5$ is an euler circuit $\ldots \ldots \ldots \ldots \ldots \ldots$.

