A Limit to Compounding

Example (This is Table 21.1 in the text) Sketch the graph of the accumulated amount for 10 years if the principal is $P=\$ 1000$ and the annual interest rate is $r=10 \%$ for simple interest, compound interest compounded yearly, compound interest compounded quarterly, and compound interest compounded daily (assume 365 days in a year).

To get the values, we can use the formulas we derived. Here is the process for getting a point beyond $t=0$; the rest are calculated in a similar fashion.

Simple interest after 1 year:

$$
A=P(1+r t)=\$ 1000(1+0.10 \times 1)=\$ 1100.00 \text { after } 1 \text { year }
$$

Compound interest compounded yearly $(i=r / n=0.10 / 1=0.10$, and $k=1)$:

$$
A=P(1+i)^{k}=\$ 1000(1+0.10)^{1}=\$ 1100.00 \text { after } 1 \text { year. }
$$

Compound interest compounded quarterly $(i=r / n=0.10 / 4=0.025$, and $k=4)$:

$$
A=P(1+i)^{k}=\$ 1000(1+0.025)^{4}=\$ 1103.81 \text { after } 1 \text { year }
$$

Compound interest compounded daily ($i=r / n=0.10 / 365=0.000273973$, and $k=365$):

$$
A=P(1+i)^{k}=\$ 1000(1+0.000273973)^{365}=\$ 1105.16 \text { after } 1 \text { year }
$$

black: simple interest.
red: compound interest, compounded yearly.
green: compound interest, compounded quarterly.
blue: compound interest, compounded daily.

Things to note:

- The curves are all essentially the same for short times.
- There are more points for compounding quarterly than yearly since interest is paid more often during the year.
- There is not much difference over 10 years to compounding quarterly and compounding daily.

Compounding more frequently leads to a larger accumulated balance, but there is a limit to this process. The limit would be if we compounded continuously.

Compounding Continuously

Example Consider a principal $P=\$ 1$ and a rate of $r=100 \%$ which is compounded over shorter and shorter time periods. We are interested in how much the accumulated amount will be after one year.

Compound interest compounded n times a year $(i=1 / n$, and $k=n$ (to get one year)):

$$
A=P(1+i)^{k}=\left(1+\frac{1}{n}\right)^{n} \quad \text { after } 1 \text { year. }
$$

There is a table in the text of these numbers, here is a sketch

We see that the accumulated amount is approaching a number:

$$
\left(1+\frac{1}{n}\right)^{n} \sim 2.71828 \ldots \text { if } n \text { is very large. }
$$

This number is similar to $\pi=3.14 \ldots$ in that it is mathematically significant and appears in many situations, and so we give it a special designation:

$$
e \sim\left(1+\frac{1}{n}\right)^{n} \sim 2.71828 \ldots \text { if } n \text { is very large. }
$$

This leads the the continuous interest formula, which is

$$
A=P e^{r} \text { after } 1 \text { year if interest is compounded continuously at annual rate } r \text {. }
$$

$A=P e^{r t}$ after t years if interest is compounded continuously at annual rate r.

The function $e^{r t}$ is called the exponential function.
The continuous interest formula is the upper limit on the accumulated amount that can accrue due to compounding interest.

Review of interest formulas (principal P and annual rate r):

- Simple interest: $A=P(1+r t)$ is the amount at time t.
- Compound interest, compounded n times over 1 year: $A=P(1+i)^{k}$ is the amount at time k, where $i=r / n$.
- Continuously compounded interest: $A=P e^{r t}$ is the amount at time t.

