Concepts: basics of complex numbers

Complex Numbers

A complex number is typically denoted $z \in \mathbb{C}$. We write the complex number in terms of its real part a and imaginary part b as $z=a+b i$, where $a, b \in \mathbb{R}$ and $i=\sqrt{-1}$.

Two complex numbers are equal if and only if their real and imaginary parts are equal.
A complex number can be represented as a point on the complex plane:

Notice that if $a \neq 0, b=0$, the number a is a real number (as it lies on the real axis). Therefore, all real numbers are also complex numbers.

If $a=0, b \neq 0$, the number $b i$ is called an imaginary number (as it lies on the imaginary axis).
The complex conjugate of $z=a+b i$ is defined as $\bar{z}=a-b i$.
The magnitude of a complex number $z=a+b i$ is given by the formula

$$
\begin{aligned}
|z| & =\sqrt{z \bar{z}} \\
& =\sqrt{(a+b i)(a-b i)} \\
& =\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Note: $|z|$ reduces to the familiar absolute value if $z \in \mathbb{R}$.

Arithmetic with Complex Numbers

Addition and subtraction: collect real and imaginary parts:

$$
(a+b i) \pm(c+d i)=(a \pm c)+(b \pm d) i
$$

Multiplication: use the distributive property and the fact $i^{2}=-1$ (do not memorize this formula):

$$
\begin{aligned}
(a+b i)(c+d i) & =a(c+d i)+b i(c+d i) \\
& =a c+a d i+b c i+b d i^{2} \\
& =a c+a d i+b c i-b d \\
& =(a c-b d)+(a d+b c) i
\end{aligned}
$$

Division: multiply the numerator and denominator by the complex conjugate of the denominator (do not memorize this formula):

$$
\begin{aligned}
\frac{a+b i}{c+d i} & =\frac{a+b i}{c+d i} \cdot \frac{c-d i}{c-d i} \\
& =\frac{(a+b i)(c-d i)}{(c+d i)(c-d i)} \\
& =\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}} \\
& =\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} i
\end{aligned}
$$

Aside and Looking Ahead: Connection of Complex Numbers with Trigonometry and Exponentials

Looking ahead, there is a deep and beautiful connection between complex numbers, trigonometry, and exponentials. Looking back at our diagram of the complex plane, we can introduce an angle θ and distance $r=|z|$ from polar coordinates.

This allows us to write

$$
\begin{aligned}
z & =a+b i \\
& =|z| \cos \theta+|z| \sin \theta i \\
& =|z|(\cos \theta+i \sin \theta)
\end{aligned}
$$

Looking ahead even further, there is a result that can be proven using calculus known as Euler's Formula: $e^{i \theta}=$ $\cos \theta+i \sin \theta$ for $\theta \in \mathbb{R}$. This means that we can write complex numbers in a variety of ways:

$$
z=a+b i=|z|(\cos \theta+i \sin \theta)=|z| e^{i \theta}
$$

These powerful representations can be used to prove trig identities, determine roots of complex numbers, solve linear differential equations, and a host of other things.

In my opinion, Euler's formula is one of the most amazing formulas in mathematics. It kicks ASS!!

