Concepts: Solving Quadratic Equations, Completing the Square, The Quadratic Formula.

Solving Quadratic Equations

The square root property: For any real number k, the equation $x^{2}=k$ is equivalent to $x= \pm \sqrt{k}$.
You typically have three options to solve a quadratic equation of the form $a x^{2}+b x+c=0$:

1. factor
2. complete the square
3. use the quadratic formula

Factoring only works if you can factor the quadratic (obviously) and relies on the zero factor property: If A and B are alegbraic expressions, then the equation $A B=0$ is equivalent to the compound statement $A=0$ or $B=0$.

We have already seen that completing the square is what leads to the quadratic formula.

$$
\begin{aligned}
a x^{2}+b x+c & =a\left(x^{2}+\frac{b}{a} x\right)+c \quad \text { Factor so the coefficient of } x^{2} \text { is } 1 . \text { Coefficient of } x \text { is } \frac{b}{a} \\
& =a\left(x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right)+c \quad \text { the blue terms add to zero; we haven't changed the equality } \\
& =a\left(x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right)+c \quad \text { the red terms can be collected together as a perfect square } \\
& =a\left(\left[x+\frac{b}{2 a}\right]^{2}-\left(\frac{b}{2 a}\right)^{2}\right)+c \\
& =a\left[x+\frac{b}{2 a}\right]^{2}-a\left(\frac{b}{2 a}\right)^{2}+c \\
& =a\left[x+\frac{b}{2 a}\right]^{2}-\frac{b^{2}}{4 a}+c \\
& =a\left[x+\frac{b}{2 a}\right]^{2}-\frac{b^{2}-4 a c}{4 a}
\end{aligned}
$$

This is how you derive the quadratic formula, since from here we set this equal to zero and solve for x :

$$
\begin{aligned}
a x^{2}+b x+c & =0 \\
a\left[x+\frac{b}{2 a}\right]^{2}-\frac{b^{2}-4 a c}{4 a} & =0 \\
a\left[x+\frac{b}{2 a}\right]^{2} & =\frac{b^{2}-4 a c}{4 a} \\
{\left[x+\frac{b}{2 a}\right]^{2} } & =\frac{b^{2}-4 a c}{4 a^{2}} \\
x+\frac{b}{2 a} & =\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a} \text { use the square root property } \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

For simpler quadratic equations of the form $a x^{2}+c=0$ we can use the square root property as well as the above techniques. Notice if $c>0$ then we have complex values solutions.

Quadratic Formula

Memorize: The two solutions to the equation $a x^{2}+b x+c=0$ are given by the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

You can use the quadratic formula to solve quadratic equations that previously you solved by factoring.

$$
\begin{aligned}
& \text { Example Solve } \frac{1}{15}+\frac{3}{y}=\frac{4}{y+1} . \\
& \qquad \begin{array}{r}
\frac{1}{15}+\frac{3}{y}=\frac{4}{y+1}(\text { multiply by the LCD which is } 15 y(y+1)) \\
\frac{1}{15} \cdot 15 y(y+1)+\frac{3}{y} \cdot 15 y(y+1)=\frac{4}{y+-} \cdot 15 y(y+1) \text { (simplify) } \\
y(y+1)+45(y+1)=60 y \\
y^{2}+y+45 y+45=60 y \\
y^{2}-14 y+45=0 \text { (use quadratic formula-I always write it out) } \\
y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array} \\
& y=\frac{14 \pm \sqrt{(-14)^{2}-4(1)(45)}}{2(1)} \\
& y=\frac{14 \pm \sqrt{16}=\frac{14 \pm 4}{2}=7 \pm 2=9 \text { or } y=5}{2}
\end{aligned}
$$

Since neither $y=9$ nor $y=5$ makes the LCD zero, these are both solutions.

Example Solve $(2 x+7)^{2}-\frac{3}{4}=14$.

$$
\begin{aligned}
(2 x+7)^{2}-\frac{3}{4} & =14 \\
(2 x+7)^{2} & =14+\frac{3}{4} \\
(2 x+7)^{2} & =\frac{59}{4} \\
\sqrt{(2 x+7)^{2}} & = \pm \sqrt{\frac{59}{4}} \\
2 x+7 & = \pm \frac{\sqrt{59}}{2} \\
2 x & =-7 \pm \frac{\sqrt{59}}{2} \\
x & =-\frac{7}{2} \pm \frac{\sqrt{59}}{4}
\end{aligned}
$$

You have to check if these are solutions by substituting back:

$$
\begin{aligned}
(2 x+7)^{2}-\frac{3}{4} & =\left(2\left(-\frac{7}{2}+\frac{\sqrt{59}}{4}\right)+7\right)^{2}-\frac{3}{4} \\
& =\left(-7+\frac{\sqrt{59}}{4}+7\right)^{2}-\frac{3}{4} \\
& =\left(\frac{\sqrt{59}}{2}\right)^{2}-\frac{3}{4} \\
& =\frac{59}{4}-\frac{3}{4}=\frac{56}{4}=14 \\
(2 x+7)^{2}-\frac{3}{4} & =\left(2\left(-\frac{7}{2}-\frac{\sqrt{59}}{4}\right)+7\right)^{2}-\frac{3}{4} \\
& =\left(-7-\frac{\sqrt{59}}{4}+7\right)^{2}-\frac{3}{4} \\
& =\left(-\frac{\sqrt{59}}{2}\right)^{2}-\frac{3}{4} \\
& =\frac{59}{4}-\frac{3}{4}=\frac{56}{4}=14
\end{aligned}
$$

So both are solutions. $x=-\frac{7}{2} \pm \frac{\sqrt{59}}{4}$.

