Concepts: Algebraic combinations of functions, composition and decomposition of functions.

## Algebraic Combinations of Functions

An ambitious way of creating new functions is to combine two or more functions to create a new function.

The most obvious way we can do this is to perform basic algebraic operations on the two functions to create the new one; hence we can add, subtract, multiply or divide functions.

Note that there are two types of algebras in use in this section,

- 1. the algebra of real numbers, i.e.  $4 \times 5 = 20, 4 5 = -1, 20/10 = 2, \text{ etc.},$
- 2. the algebra of functions, fg, f g, etc.

#### Algebra of functions

Let f (with domain A) and g (with domain B) be functions. Then the functions f + g, f - g, fg, f/g are defined as:

 $(f+g)(x) = f(x) + g(x) \text{ domain } A \cap B$  $(f-g)(x) = f(x) - g(x) \text{ domain } A \cap B$  $(fg)(x) = f(x)g(x) \text{ domain } A \cap B$  $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \text{ domain } \left\{x \in A \cap B \mid g(x) \neq 0\right\}$ 

The domains are all the *intersection* (that's what the symbol  $\cap$  means) of the domain of f and g, making sure we don't divide by zero.

#### A Closer Look

- The minus sign in f g represents the difference between two functions.
- The minus sign in f(x) g(x) represents the difference between two real numbers.

The relation that we have that allows us to calculate this quantity is (f - g)(x) = f(x) - g(x), which is easy to remember. This is a subtle point, but it is always a good idea to understand what the mathematical notation is telling you.

Note: Two functions are equal if they have the same functional definition and the same domain.

**Example** If  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{4 - x^2}$ , find the functions f + g, f - g, fg, f/g and give their domains.

First, we need to determine the intersection of the domains of f and g, so we need to determine the domains of f and g. Domain of  $f = \sqrt{x}$  is  $x \in [0, \infty)$ Domain of  $g = \sqrt{4 - x^2}$  is such that  $4 - x^2 \ge 0 \rightarrow -2 \le x \le 2$  or  $x \in [-2, 2]$ . Therefore the intersection of these domains is  $x \in [0, 2]$  or  $0 \le x \le 2$ . And our new functions are defined as:  $(f + g)(x) = \sqrt{x} + \sqrt{4 - x^2}, \ 0 \le x \le 2$   $(f - g)(x) = \sqrt{x} - \sqrt{4 - x^2}, \ 0 \le x \le 2$   $(fg)(x) = \sqrt{x}\sqrt{4 - x^2} = \sqrt{4x - x^3}, \ 0 \le x \le 2$  $(f/g)(x) = \frac{\sqrt{x}}{\sqrt{4 - x^2}}, \ 0 \le x < 2$ , where we exclude x = 2 since it would lead to division by zero. **Example** If  $f(x) = \sqrt{x}$ , find the function  $\overline{ff}$  and give the domain.

First, we need the domain of f: Domain of  $f = \sqrt{x}$  is  $x \in [0, \infty)$ Our new function is defined as  $(ff)(x) = \sqrt{x}\sqrt{x} = x, \ 0 \le x \le \infty$ . So the basic function  $h(x) = x, x \in \mathbb{R}$  is NOT the same function as  $(ff)(x) = x, \ 0 \le x < \infty$  since the domains are different.

# Composition of functions

Given two functions f and g, the composite function  $f \circ g$  (called the composition of f and g) is defined by

 $(f \circ g)(x) = f(g(x))$ 

and the domain of  $f \circ g$  consists of all x-values in the domain of g that map to g(x) values in the domain of f.

It is important to note that  $f \circ g \neq g \circ f$ .

Arrow Diagram of Composition  $f \circ g$ 



The important thing to notice is the domain of the composition  $f \circ g$  is a subset of the domain of g. To get the domain of a composition, do not simplify the composition at all, and look for the x values for which that expression is defined.

Example Find  $(f \circ g \circ h)(x)$  if  $f(x) = \frac{x}{x+1}$ ,  $g(x) = x^{10}$ , h(x) = x+3.  $(f \circ g \circ h)(x) = f(g(h(x)))$  = f(g(x+3))  $= f((x+3)^{10})$  $= \frac{(x+3)^{10}}{(x+3)^{10}+1}$ 

Since the domain and range of h is  $x \in \mathbb{R}$ , and the domain and range of g is  $x \in \mathbb{R}$ , there are no restrictions on the domain from the set we are drawing from. The only restriction arises from division by zero, but since  $(x+3)^{10}+1=0$  has no real valued solutions, the domain of  $f \circ g \circ h$  is  $x \in \mathbb{R}$ .

**Composition example** If  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{4 - x^2}$ , find  $(f \circ g)(x)$  and  $(g \circ f)(x)$  and give the domains.

### Solution

To get the domain, do not simplify at all and look for any areas of the expression that would cause problems.

$$(f \circ g)(x) = f(g(x))$$
  
=  $f(\sqrt{4-x^2})$   
=  $\sqrt{(\sqrt{4-x^2})}$  (this line is used to get domain)  
=  $(4-x^2)^{1/4}$ 

For domain, the expression  $\sqrt{(\sqrt{4-x^2})}$  is only defined if  $4-x^2 \ge 0$ , which means  $-2 \le x \le 2$ . Therefore, the domain of  $f \circ g$  is  $x \in [-2, 2]$ .

$$(g \circ f)(x) = g(f(x))$$
  
=  $g(\sqrt{x})$   
=  $\sqrt{4 - (\sqrt{x})^2}$  (this line is used to get domain)  
=  $\sqrt{4 - x}$ 

For domain, the expression  $\sqrt{4 - (\sqrt{x})^2}$  is only defined if  $x \ge 0$  and  $4 - (\sqrt{x})^2 \ge 0$ . This is a compound inequality (two inequalities must be satisfied). The second inequality simplifies to  $x \le 4$ , so both are satisfied when  $x \in [0, 2]$ . The domain of  $g \circ f$  is [0, 4].

Note this is different than if we had just looked at the domain of  $h(x) = \sqrt{4-x}$ , which is  $x \le 4$ . The lesson: the domain of compositions cannot be found simply by looking at the final function relation.

**Example of Decomposing using composition** Given  $F(x) = \cos^2(x+9)$ , determine functions f, g, h so you can write F(x) as a composition  $(f \circ g \circ h)(x)$ .

Look at how you compute F(x), and build the functions from that: Add 9: h(x) = x + 9Take cosine:  $g(x) = \cos x$ Square:  $f(x) = x^2$ You should check that this choice yields  $(f \circ g \circ h)(x) = F(x)$ .