Concepts: Algebraic combinations of functions, composition and decomposition of functions.

Algebraic Combinations of Functions

An ambitious way of creating new functions is to combine two or more functions to create a new function.
The most obvious way we can do this is to perform basic algebraic operations on the two functions to create the new one; hence we can add, subtract, multiply or divide functions.

Note that there are two types of algebras in use in this section,

1. the algebra of real numbers, i.e. $4 \times 5=20,4-5=-1,20 / 10=2$, etc.,
2. the algebra of functions, $f g, f-g$, etc.

Algebra of functions

Let f (with domain A) and g (with domain B) be functions. Then the functions $f+g, f-g, f g, f / g$ are defined as:
$(f+g)(x)=f(x)+g(x)$ domain $A \cap B$
$(f-g)(x)=f(x)-g(x)$ domain $A \cap B$
$(f g)(x)=f(x) g(x)$ domain $A \cap B$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ domain $\{x \in A \cap B \mid g(x) \neq 0\}$
The domains are all the intersection (that's what the symbol \cap means) of the domain of f and g, making sure we don't divide by zero.

A Closer Look

- The minus sign in $f-g$ represents the difference between two functions.
- The minus sign in $f(x)-g(x)$ represents the difference between two real numbers.

The relation that we have that allows us to calculate this quantity is $(f-g)(x)=f(x)-g(x)$, which is easy to remember. This is a subtle point, but it is always a good idea to understand what the mathematical notation is telling you.

Note: Two functions are equal if they have the same functional definition and the same domain.

Example If $f(x)=\sqrt{x}$ and $g(x)=\sqrt{4-x^{2}}$, find the functions $f+g, f-g, f g, f / g$ and give their domains.
First, we need to determine the intersection of the domains of f and g, so we need to determine the domains of f and g.
Domain of $f=\sqrt{x}$ is $x \in[0, \infty)$
Domain of $g=\sqrt{4-x^{2}}$ is such that $4-x^{2} \geq 0 \rightarrow-2 \leq x \leq 2$ or $x \in[-2,2]$.
Therefore the intersection of these domains is $x \in[0,2]$ or $0 \leq x \leq 2$.
And our new functions are defined as:
$(f+g)(x)=\sqrt{x}+\sqrt{4-x^{2}}, 0 \leq x \leq 2$
$(f-g)(x)=\sqrt{x}-\sqrt{4-x^{2}}, 0 \leq x \leq 2$
$(f g)(x)=\sqrt{x} \sqrt{4-x^{2}}=\sqrt{4 x-x^{3}}, 0 \leq x \leq 2$
$(f / g)(x)=\frac{\sqrt{x}}{\sqrt{4-x^{2}}}, 0 \leq x<2$, where we exclude $x=2$ since it would lead to division by zero.

Example If $f(x)=\sqrt{x}$, find the function $f f$ and give the domain.
First, we need the domain of f : Domain of $f=\sqrt{x}$ is $x \in[0, \infty)$
Our new function is defined as
$(f f)(x)=\sqrt{x} \sqrt{x}=x, 0 \leq x \leq \infty$.
So the basic function $h(x)=x, x \in \mathbb{R}$ is NOT the same function as $(f f)(x)=x, 0 \leq x<\infty$ since the domains are different.

Composition of functions

Given two functions f and g, the composite function $f \circ g$ (called the composition of f and g) is defined by

$$
(f \circ g)(x)=f(g(x))
$$

and the domain of $f \circ g$ consists of all x-values in the domain of g that map to $g(x)$ values in the domain of f.
It is important to note that $f \circ g \neq g \circ f$.

Arrow Diagram of Composition $f \circ g$

The important thing to notice is the domain of the composition $f \circ g$ is a subset of the domain of g. To get the domain of a composition, do not simplify the composition at all, and look for the x values for which that expression is defined.

Example Find $(f \circ g \circ h)(x)$ if $f(x)=\frac{x}{x+1}, g(x)=x^{10}, h(x)=x+3$.

$$
\begin{aligned}
(f \circ g \circ h)(x) & =f(g(h(x))) \\
& =f(g(x+3)) \\
& =f\left((x+3)^{10}\right) \\
& =\frac{(x+3)^{10}}{(x+3)^{10}+1}
\end{aligned}
$$

Since the domain and range of h is $x \in \mathbb{R}$, and the domain and range of g is $x \in \mathbb{R}$, there are no restrictions on the domain from the set we are drawing from. The only restriction arises from division by zero, but since $(x+3)^{10}+1=0$ has no real valued solutions, the domain of $f \circ g \circ h$ is $x \in \mathbb{R}$.

Composition example If $f(x)=\sqrt{x}$ and $g(x)=\sqrt{4-x^{2}}$, find $(f \circ g)(x)$ and $(g \circ f)(x)$ and give the domains.

Solution

To get the domain, do not simplify at all and look for any areas of the expression that would cause problems.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f\left(\sqrt{4-x^{2}}\right) \\
& =\sqrt{\left(\sqrt{4-x^{2}}\right)} \text { (this line is used to get domain) } \\
& =\left(4-x^{2}\right)^{1 / 4}
\end{aligned}
$$

For domain, the expression $\sqrt{\left(\sqrt{4-x^{2}}\right)}$ is only defined if $4-x^{2} \geq 0$, which means $-2 \leq x \leq 2$.
Therefore, the domain of $f \circ g$ is $x \in[-2,2]$.

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g(\sqrt{x}) \\
& =\sqrt{4-(\sqrt{x})^{2}} \text { (this line is used to get domain) } \\
& =\sqrt{4-x}
\end{aligned}
$$

For domain, the expression $\sqrt{4-(\sqrt{x})^{2}}$ is only defined if $x \geq 0$ and $4-(\sqrt{x})^{2} \geq 0$. This is a compound inequality (two inequalities must be satisfied). The second inequality simplifies to $x \leq 4$, so both are satisfied when $x \in[0,2]$. The domain of $g \circ f$ is $[0,4]$.
Note this is different than if we had just looked at the domain of $h(x)=\sqrt{4-x}$, which is $x \leq 4$.
The lesson: the domain of compositions cannot be found simply by looking at the final function relation.

Example of Decomposing using composition Given $F(x)=\cos ^{2}(x+9)$, determine funcions f, g, h so you can write $F(x)$ as a composition $(f \circ g \circ h)(x)$.

Look at how you compute $F(x)$, and build the functions from that:
Add 9: $h(x)=x+9$
Take cosine: $g(x)=\cos x$
Square: $f(x)=x^{2}$
You should check that this choice yields $(f \circ g \circ h)(x)=F(x)$.

