Concepts: Sketching Quadratic Functions, The Vertex Form of a Quadratic Function, Solving Quadratic Inequalities with Sign Charts.

Creating Good Sketches

When you are sketching without using graph paper (which we often do), here are some important things to do:

- Label your axes, x axis to the right (in the direction of increasing x) and y axis to the top (in the direction of increasing y).
- Include arrows on the ends of your curve if the line continues forever.
- Include the equation of the curve somewhere on the graph beside the curve.
- Explicitly label the points of interest on the curve as (x, y) ordered pairs.
- Exact numbers should be used whenever possible, but you may want to convert to a decimal to determine if a number is positive or negative (useful for determining which side of y-axis x-intercepts should be on in your sketch).
- Any annotations you make on the graph should be large and neatly labeled so it is easy to read.
- Make the entire graph large enough to easily read, and redraw it if necessary.
- Whatever work was done do help you create the sketch is NOT scratchwork, it is an important part of your solution. It must be neat, and organized in a manner that easily guides the reader through the creation of your sketch.

For quadratics,

- The vertex and x-intercept (if there are any) should be labelled.
- You may find it useful to use headings for computation of zeroes or vertex to help organize your work.
- Since there are two ways to sketch a quadratic (converting to vertex form, or looking at zeros, opens up/down and end-behaviour), tell the reader right at the start which way you are going to sketch.

Sketching Quadratics by Converting to The Vertex Form

The form $f(x)=a(x-h)^{2}+k$ is called the vertex form for a quadratic function. It is obtained from the standard form $f(x)=a x^{2}+b x+c$ by completing the square.
The vertex of the parabola is (h, k).
The axis of symmetry is $x=h$.
If $a>0$, the parabola opens up, if $a<0$ the parabola opens down.
You can also sketch a parabola by writing it in the vertex form and identifying the vertex, determining if it opens up/down, and finding any x-intercepts.

The domain of every quadratic is the set of real numbers, \mathbb{R}.
The range depends on whether the quadratic opens up or down:
Opens up, range $y \in[h, \infty)$; opens down, range $y \in(-\infty, h]$.

Sketching Quadratics by Computing Zeros, End Behaviour, and Opening Up/Down

For a quadratic function $y=f(x)=a x^{2}+b x+c$, we can create a sketch by determining four things:

1. x-intercepts: determine these by using the quadratic formula $x_{\text {intercept }}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

NOTE: If $b^{2}-4 a c<0$ then there are no x-intercepts (they are not real numbers).
2. Vertex: $\left(x_{\text {Vertex }}, y_{\text {Vertex }}\right)=\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$.

$$
\begin{aligned}
& x_{\mathrm{Vertex}}=-\frac{b}{2 a} \\
& y_{\mathrm{Vertex}}=f\left(-\frac{b}{2 a}\right)
\end{aligned}
$$

How to remember this: The x-coordinate of the vertex will be right in the middle of the two x-intercepts, even if the x-intercepts are not real numbers!

$$
\begin{aligned}
x_{\text {Vertx }} & =\frac{1}{2}\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}+\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right) \\
& =\frac{1}{2}\left(\frac{-b+\sqrt{b^{2}-4 a c}-b-\sqrt{b^{2}-4 a c}}{2 a}\right) \\
& =\frac{1}{2}\left(\frac{-2 b}{2 a}\right) \\
& =\frac{-b}{2 a}
\end{aligned}
$$

3. The function opens up if $a>0$, and opens down if $a<0$.
4. y-intercept: evaluate at $x=0$, so figure out what $f(0)$ is. This can be added at the end, and is not needed to get the sketch.

Example Sketch the parabola $y=5 x^{2}+4 x-12$. Label the vertex, y-intercept, and any x-intercepts on your sketch.
To get the sketch of a quadratic, we should do four things:

1. Determine if it opens up or down,
2. Determine the vertex,
3. Determine any x-intercepts (if they exist),
4. Determine the y-intercept.

A quadratic opens up if $a>0$, and opens down if $a<0$. Since $a=5$ in this case, this quadratic opens up.
To get the vertex, identity $a=5, b=4$, and $c=-12$. Then the vertex is located at:

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{-4}{2(5)}=-\frac{2}{5} \\
& y=f\left(\frac{-b}{2 a}\right)=f\left(-\frac{2}{5}\right)=5\left(-\frac{2}{5}\right)^{2}+4\left(-\frac{2}{5}\right)-12=-\frac{64}{5}
\end{aligned}
$$

The vertex is at $\left(-\frac{2}{5},-\frac{64}{5}\right)$.
To get the x-intercepts, use the quadratic formula:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-4 \pm \sqrt{4^{2}-4(5)(-12)}}{2(5)} \\
& =\frac{-4 \pm \sqrt{256}}{10} \\
& =\frac{-4 \pm 16}{10} \\
& =\frac{-4+16}{10} \text { or } \frac{-4-16}{10} \\
& =\frac{12}{10} \text { or } \frac{-20}{10} \\
& =\frac{6}{5} \text { or }-2
\end{aligned}
$$

To get the y-intercept, evaluate $f(0)$:

$$
y=f(0)=5(0)^{2}+4(0)-12=-12
$$

You can now put this all together to get the sketch:
$\underbrace{(-2,0)}_{\left(-\frac{6}{5}, 0\right)} x$

Sign Charts to Solve Inequalities

A sign chart simply lists the sign of the function you are interested in along the x-axis. It does not provide as much information as a sketch, but it provides enough to solve inequalities.
Constructing a sign chart for a quadratic relies on knowing the end behaviour of the quadratic, and the x-intercepts. We will see more complicated sign charts for polynomials and rational functions later.

Note: The text describes sign charts slightly differently, in that they use a test-point method to determine the sign of the quadratic in each interval once the x-intercepts are known. Therefore, they do not need to know the end behaviour when they construct their sign chart. The technique I have outlined below and the one the text uses are both common techniques to generate sign charts and solve inequalities.
Example Determine the solution to $2 x^{2}-4 x-9<0$ using a sign chart. Write the solution using interval notation.
First, we must determine if there are any x-intercepts for the quadratic, which we can do using the quadratic formula.

$$
\begin{aligned}
2 x^{2}-4 x-9 & =0 \\
x & =\frac{4 \pm \sqrt{16-4(2)(-9)}}{4} \\
& =\frac{4 \pm \sqrt{88}}{4} \\
& =\frac{2 \pm \sqrt{22}}{2}
\end{aligned}
$$

so there are distinct real-valued x-intercepts. This is important, since this tells us the quadratic changes sign at $x=\frac{2 \pm \sqrt{22}}{2}$ (if there was only one real root, or the roots were complex-valued, the quadratic would not change sign). Now, the quadratic opens up since $a=2>0$.
A quadratic that opens up must at some point be positive for very large x; we can be more precise and write this as

$$
\lim _{x \rightarrow \infty}\left(2 x^{2}-4 x-9\right)=\infty
$$

and

$$
\lim _{x \rightarrow-\infty}\left(2 x^{2}-4 x-9\right)=\infty
$$

Precise understanding of the limit notation will happen in calculus, but it is nice to see it here.
Putting all this information together, we can construct a sign chart:

For x very large the quadratic is positive
The quadratic

$$
\frac{2-\sqrt{21}}{2} \quad \frac{2+\sqrt{22}}{2}
$$

This is the sign chart:

And from the sign chart, we read of where the quadratic is less than zero: $x \in\left(\frac{2-\sqrt{22}}{2}, \frac{2+\sqrt{22}}{2}\right)$.

