Concepts: Multiplicity, n-Root Theorem, Conjugate Pairs Theorem, root/zero/ x-intercept, Descartes's Rule of Signs

Definition (multiplicity): If the polynomial f has $(x-c)^{m}$ as a factor but not $(x-c)^{m+1}$, then c is a zero of f of multiplicity m.

Example Find all the roots of $f(x)=\frac{9}{4} x^{2}-21 x+49$.
Seeing that the $\frac{9}{4}=\left(\frac{3}{2}\right)^{2}$ and $49=7^{2}$, we might guess this factors as a perfect square, $f(x)=\left(\frac{3}{2} x-7\right)^{2}$. Let's check if our guess is correct:

$$
\begin{aligned}
\left(\frac{3}{2} x-7\right)^{2} & =\left(\frac{3}{2} x-7\right)\left(\frac{3}{2} x-7\right) \\
& =\frac{9}{4} x^{2}-\frac{21}{2} x-\frac{21}{2} x+49 \\
& =\frac{9}{4} x^{2}-21 x+49 \\
& =f(x)
\end{aligned}
$$

So since $f(x)=\left(\frac{3}{2} x-7\right)^{2}, f$ has a root of $c=14 / 3$ of multiplicity 2 .
n-Root Theorem: If $P(x)=0$ is a polynomial equation with real or complex coefficients and positive degree n, then (including multiplicity) $P(x)=0$ has n roots.
Conjugate Pairs Theorem: If $P(x)=0$ is a polynomial equation with real coefficients and the complex number $c=a+b i$ is a root, then the complex conjugate $\bar{c}=a-b i$ is also a root.
These theorems tell us that any polynomial of degree n with real coefficients can be written as

$$
P(x)=\left(x-c_{1}\right)\left(x-c_{2}\right)\left(x-c_{3}\right) \ldots\left(x-c_{n}\right)=\sum_{i=1}^{n}\left(x-c_{i}\right),
$$

where some of the $c_{i} \in \mathbb{C}$ may be repeated, and complex roots appear in complex conjugate pairs.
Although we won't be looking at sketching polynomials by hand until later, you may be using a calculator to sketch polynomials to help you visualize examples, and there are some things to note about the sketches of polynomials.
When we look at a sketch of a polynomial of degree n, we may not see $n x$-intercepts due to two things:

- some of the zeros may be real, but have multiplicity greater than one, and
- some of the zeros may be complex.

How Multiplicity of zero $c \in \mathbb{R}$ Affects the Behaviour of $f(x)$

- If $c \in \mathbb{R}$ is a zero of the polynomial f with odd multiplicity, then the graph of f crosses the x axis at $x=c$. This is because the function f will change sign at $x=c$.
- If $c \in \mathbb{R}$ is a zero of the polynomial f with even multiplicity, then the graph of f does not cross the x axis at $x=c$, but does touch the x axis at $x=c$. This is because the function f will not change sign at $x=c$.
- If the multiplicity is greater than or equal to 2 , the graph will be horizontal where it touches the x-axis.

Equivalent Statements for Polynomial Functions

All these statements are equivalent if $c \in \mathbb{R}$. If one is true, all the others are true as well.

1. $x=c$ is a root of the equation $f(x)=0$.
2. c is a zero of the function f.
3. c is an x-intercept of the graph of $y=f(x)$.
4. $x-c$ is a factor of $f(x)$.

Note: If c is a complex number, it can be a root but not an x-intercept. If $c \in \mathbb{C}$, Statements 1,2 , and 4 are all equivalent.

Example Find the zeros with multiplicity for the polynomial $f(x)=x(3 x-5)^{4}(2+x)^{3}$. What do you know about the behaviour of f near the zeros from this?

- zero at $x=0$ has multiplicity 1 (odd) so f changes sign at $x=0$,
- zero at $x=5 / 3$ has multiplicity 4 (even) so f does not change sign at $x=5 / 3$,
- zero at $x=-2$ has multiplicity 3 (odd) so f changes sign at $x=-2$, and since multiplicity was greater than $2, f$ will be horizontal at $x=-2$.

Definition: Variation of Signs For a polynomial written in descending order, we say a variation of signs occurs when the sign of consecutive terms changes. For example

$$
\begin{aligned}
& P(x)=\underbrace{+2 x^{3}} \underbrace{-3 x^{2}+5 x-6} 3 \text { variations of sign } \\
& P(x)=-2 x^{4}-\underbrace{-7 x^{3}}+3 x^{2}+\underbrace{x-1} 2 \text { voriations of sign }
\end{aligned}
$$

To use Descartes's Rule of Signs, we also need to check the variation of sign of $P(-x)$ once it has been simplified.

$$
\begin{aligned}
P(x) & =2 x^{3}-3 x^{2}+5 x-6 \text { has } 3 \text { variations of gign. } \\
P(-x) & =2(-x)^{3}-3(-x)^{2}+5(-x)-6 \\
& =-2 x^{3}-3 x-5 x-6 \text { has no variations of sign. } \\
P(x) & =-2 x^{4}-7 x^{3}+3 x^{2}+x-1 \text { has } 2 \text { variations of sign. } \\
P(-x) & =-2(-x)^{4}-7(-x)^{3}+3(-x)^{2}+(-x)-1 \\
& =-2 x^{4}+7 x^{3}+3 x^{2}-x-1 \text { has } 2 \text { variations of sign. }
\end{aligned}
$$

Descartes's Rule of Signs

Suppose $P(x)=0$ is a polynomial equation with real coefficients with terms written in descending order.

- The number of positive real roots of the equation is either equal to the number of variations of sign of $P(x)$ or less than that by an even number.
- The number of negative real roots of the equation is either equal to the number of variations of sign of $P(-x)$ or less than that by an even number.

Descartes's Rule allows us to say something about the roots of $P(x)=0$ without actually solving the equation. This can be important since solving the equation may be quite difficult!

Example: Discuss the possibilities for the roots to $2 x^{3}-3 x^{2}+5 x-6=0$ using Decsartes's Rule of Signs. $P(x)=2 x^{3}-3 x^{2}+5 x-6$ has 3 variations of signs, so the number of positive real roots is either 3 or 1 .
$P(-x)=-2 x^{3}-3 x^{2}-5 x-6$ has no variations of signs, so the number of negative real roots is definitely 0.
Since the equation is third degree, there must be three roots, and the possibilities are

- 3 positive real roots, or
- 1 positive real root, 2 complex roots (complex conjugate pairs).

Example: Discuss the possibilities for the roots to $-2 x^{4}-7 x^{3}+3 x^{2}+x-1=0$ using Decsartes's Rule of Signs.
$P(x)=-2 x^{4}-7 x^{3}+3 x^{2}+x-1$ has 2 variations of signs, so the number of positive real roots is either 2 or 0 .
$P(-x)=-2 x^{4}+7 x^{3}+3 x^{2}-x-1$ has 2 variations of signs, so the number of negative real roots is either 2 or 0.
Since the equation is fourth degree, there must be four roots, and the possibilities are

- 2 positive real roots and 2 negative real roots,
- 2 positive real roots and 2 complex roots (complex conjugate pairs),
- 2 negative real roots and 2 complex roots (complex conjugate pairs),
- 4 complex roots, appearing in 2 sets of complex conjugate pairs.

Bounds on Roots

I am not having you do the Bounds on Roots section, since it never comes up in calculus. It can be useful, but it is not as critical as the other aspects.

