Precalculus: 3.3 Theory of Equations

Concepts: Multiplicity, n-Root Theorem, Conjugate Pairs Theorem, root/zero/z-intercept, Descartes’s
Rule of Signs

Definition (multiplicity): If the polynomial f has (z — ¢)™ as a factor but not (z — ¢)™*!, then c is a zero of f
of multiplicity m.

Example Find all the roots of f(z) = 22% — 21z + 49.
Seeing that the § = (3)? and 49 = 72, we might guess this factors as a perfect square, f(z) = (32 — 7)2
Let’s check if our guess is correct:
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So since f(z) = (32— 7)?, f has a root of ¢ = 14/3 of multiplicity 2.

n-Root Theorem: If P(x) = 0 is a polynomial equation with real or complex coefficients and positive degree n,
then (including multiplicity) P(z) = 0 has n roots.

Conjugate Pairs Theorem: If P(z) = 0 is a polynomial equation with real coefficients and the complex number
c=a + bi is a root, then the complex conjugate ¢ = a — bi is also a root.

These theorems tell us that any polynomial of degree n with real coefficients can be written as

n

Piz)=(z-ca)lz—c)(z—c)...(1—cn) = Y _(x—ci),

i=1
where some of the ¢; € C may be repeated, and complex roots appear in complex conjugate pairs.

Although we won’t be looking at sketching polynomials by hand until later, you may be using a calculator to sketch
polynomials to help you visualize examples, and there are some things to note about the sketches of polynomials.

When we look at a sketch of a polynomial of degree n, we may not see n x-intercepts due to two things:

e some of the zeros may be real, but have multiplicity greater than one, and
e some of the zeros may be complex.

How Multiplicity of zero ¢ € R Affects the Behaviour of f(z)

o If c € R is a zero of the polynomial f with odd multiplicity, then the graph of f crosses the = axis at
x = c. This is because the function f will change sign at = = c.

e If ¢ € R is a zero of the polynomial f with even multiplicity, then the graph of f does not cross the x
axis at x = ¢, but does touch the x axis at x = ¢. This is because the function f will not change sign at
T =c.

e [f the multiplicity is greater than or equal to 2, the graph will be horizontal where it touches the z-axis.

Page 1 of 3



Precalculus: 3.3 Theory of Equations

Equivalent Statements for Polynomial Functions

All these statements are equivalent if ¢ € R. If one is true, all the others are true as well.

x = c¢ is a root of the equation f(z) = 0.

c is a zero of the function f.

¢ is an z-intercept of the graph of y = f(z).
x — ¢ is a factor of f(x).

W=

Note: If ¢ is a complex number, it can be a root but not an z-intercept. If ¢ € C, Statements 1, 2, and 4 are all
equivalent.

Example Find the zeros with multiplicity for the polynomial f(x) = z(3z —5)*(2+x)3. What do you know
about the behaviour of f near the zeros from this?

e zero at = 0 has multiplicity 1 (odd) so f changes sign at x = 0,
e zero at = 5/3 has multiplicity 4 (even) so f does not change sign at x = 5/3,

e zero at x = —2 has multiplicity 3 (odd) so f changes sign at x = —2, and since multiplicity was greater
than 2, f will be horizontal at x = —2.

Definition: Variation of Signs For a polynomial written in descending order, we say a variation of signs occurs
when the sign of consecutive terms changes. For example
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To use Descartes’s Rule of Signs, we also need to check the variation of sign of P(—z) once it has been simplified.
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Descartes’s Rule of Signs

Suppose P(x) = 0 is a polynomial equation with real coefficients with terms written in descending order.

e The number of positive real roots of the equation is either equal to the number of variations of sign of P(x)
or less than that by an even number.

e The number of negative real roots of the equation is either equal to the number of variations of sign of P(—x)
or less than that by an even number.
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Descartes’s Rule allows us to say something about the roots of P(z) = 0 without actually solving the equation.
This can be important since solving the equation may be quite difficult!

Example: Discuss the possibilities for the roots to 222 — 322 + 52 — 6 = 0 using Decsartes’s Rule of Signs.
P(x) = 223 — 32 + 52 — 6 has 3 variations of signs, so the number of positive real roots is either 3 or 1.

P(—x) = —223 — 322 — 52 — 6 has no variations of signs, so the number of negative real roots is definitely 0.

Since the equation is third degree, there must be three roots, and the possibilities are

e 3 positive real roots, or
e 1 positive real root, 2 complex roots (complex conjugate pairs).

Example: Discuss the possibilities for the roots to —22% — 723 + 322 + 2 — 1 = 0 using Decsartes’s Rule of

Signs.
P(z) = —22* — 723 + 322+ x — 1 has 2 variations of signs, so the number of positive real roots is either 2 or 0.
P(—x) = —22*4+ 723+ 322 —x—1 has 2 variations of signs, so the number of negative real roots is either 2 or 0.

Since the equation is fourth degree, there must be four roots, and the possibilities are

2 positive real roots and 2 negative real roots,

2 positive real roots and 2 complex roots (complex conjugate pairs),
2 negative real roots and 2 complex roots (complex conjugate pairs),
4 complex roots, appearing in 2 sets of complex conjugate pairs.

Bounds on Roots

I am not having you do the Bounds on Roots section, since it never comes up in calculus. It can be useful, but it
is not as critical as the other aspects.
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