Questions

1. Determine the distance between $(1 + \sqrt{2}, -2)$ and $(1 - \sqrt{2}, 2)$ as well as the midpoint of the line segment joining the two points.

2. Determine the center and radius of the circle $x^2 - 3x + y^2 + 2y = 3/4$, then sketch the graph of the circle.

3. Write the standard equation for the circle:

4. Show the points A(-4, -5)m B(1, 1), and C(6, 7) are colinear.

Hint: Colinear means lie of the same line, so if this is true what must the relationship be between the distances AB, BC and AC?

Solutions

1. Determine the distance between $(1 + \sqrt{2}, -2)$ and $(1 - \sqrt{2}, 2)$ as well as the midpoint of the line segment joining the two points.

Distance between
$$(1+z_{2}, -z), (1-\sqrt{z}, 2);$$
 midpoint:
 $d = \sqrt{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}}$
 $= \sqrt{1-z_{2}-1-\sqrt{z}}^{2} + (z-(-z))^{2}$
 $= \sqrt{(-2\sqrt{z})^{2} + (4)^{2}}$
 $= \sqrt{4\cdot x_{1}+z_{2}}$, $\frac{y_{1}+y_{2}}{z}$ = $(\frac{1+\sqrt{2}+1-\sqrt{z}}{z}, -\frac{z+z}{z})$
 $= (1,0)$

2. Determine the center and radius of the circle $x^2 - 3x + y^2 + 2y = 3/4$, then sketch the graph of the circle.

3. Write the standard equation for the circle:

4. Show the points A(-4, -5) m B(1, 1), and C(6, 7) are collinear.

Hint: Colinear means lie of the same line, so if this is true what must the relationship be between the distances AB, BC and AC?

If
$$A_1B_1C$$
 are collineally, then $AB + BC = AC$. It must look like $A = B = C$ not
 $AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ diotance formula $AC = \sqrt{(-4 - 6)^2 + (-5 - 7)^2}$ $A = \sqrt{100 + 144}$
 $= \sqrt{25 + 36^1}$ $= \sqrt{2444^7}$
 $= \sqrt{25 + 36^1}$ $= \sqrt{2444^7}$
 $BC = \sqrt{(1 - 6)^2 + (1 - 7)^2}$ Since $AB + BC = AC$, the points
 $= \sqrt{25 + 36}$ are collinear.