Questions

1. Determine the distance between $(1+\sqrt{2},-2)$ and $(1-\sqrt{2}, 2)$ as well as the midpoint of the line segment joining the two points.
2. Determine the center and radius of the circle $x^{2}-3 x+y^{2}+2 y=3 / 4$, then sketch the graph of the circle.
3. Write the standard equation for the circle:

4. Show the points $A(-4,-5) \mathrm{m} B(1,1)$, and $C(6,7)$ are colinear.

Hint: Colinear means lie of the same line, so if this is true what must the relationship be between the distances $A B, B C$ and $A C$?

Solutions

1. Determine the distance between $(1+\sqrt{2},-2)$ and $(1-\sqrt{2}, 2)$ as well as the midpoint of the line segment joining the two points.

$$
\begin{array}{rlrl}
\text { Distance between }(1+\sqrt{2},-2),(1-\sqrt{2}, 2): & \quad \text { Midpoint: } \\
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{1+\sqrt{2}+1-\sqrt{2}}{2}, \frac{-2+2}{2}\right) \\
& =\sqrt{(1-\sqrt{2}-1-\sqrt{2})^{2}+(2-(-2))^{2}} & & =(1,0) \\
& =\sqrt{(-2 \sqrt{2})^{2}+(4)^{2}} & & \\
& =\sqrt{4 \cdot 2+16} \\
& =\sqrt{24} & &
\end{array}
$$

2. Determine the center and radius of the circle $x^{2}-3 x+y^{2}+2 y=3 / 4$, then sketch the graph of the circle.

Complete the square in x and y.

$$
\begin{aligned}
&\left(x-\frac{3}{2}\right)^{2}+(y+1)^{2}=\frac{3}{4}+\frac{9}{4}+1 \\
&=2^{2} \\
& \text { Center }(3 / 2,-1) \text { radius } 2 .
\end{aligned}
$$

3. Write the standard equation for the circle:

$$
\begin{array}{rlr}
\text { Center is at midpoint } & & \text { Radius is distance from center } \\
\text { between }(-1,-1) \text { and }(3,5) . & \begin{aligned}
\text { to }(3,5) \text { of }(-1,-1)
\end{aligned} \\
\begin{array}{rlr}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{2}{2}, \frac{4}{2}\right) & & =\sqrt{(1-3)^{2}+(2-5)^{2}} \\
& =(1,2) & \\
& =\sqrt{1+9}
\end{array} \\
\text { center }(n, k)=(1,2) & & \\
\text { stand and form for circle } & (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-1)^{2}+(y-2)^{2}=13
\end{array}
$$

4. Show the points $A(-4,-5) \mathrm{m} B(1,1)$, and $C(6,7)$ are colinear.

Hint: Colinear means lie of the same line, so if this is true what must the relationship be between the distances $A B, B C$ and $A C$?

If $A, B_{1} C$ art collinear, then $A B+B C=A C$. It must look like $A B C$ not $\begin{aligned} A B & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \quad \text { distance formula } & A C & =\sqrt{(-4-6)^{2}+(-5-7)^{2}} \\ & =\sqrt{(-4-1)^{2}+(-5-1)^{2}} & & =\sqrt{100+144} \\ & =\sqrt{25+36} & & =\sqrt{244} \\ & =\sqrt{61} & & =2 \sqrt{61} \\ B C & =\sqrt{(1-6)^{2}+(1-7)^{2}} & & \end{aligned}$
$=\sqrt{61}$

