Questions

1. Which of the following set of points represents a function?

2. Find the domain of the function $f(x)=\frac{1}{x-2}+\sqrt{x^{2}-1}$.
3. Find the range of the function $f(x)=5+\sqrt{4-x}$.

Note: Sketching the functions $y=\sqrt{x-1}$ and $y=\frac{1}{x-1}$ by hand will be easier when we look at graphical transformations. Have a try at sketching them now, but realize sketching is a topic we will revisit in more detail in the future.
4. Compute the average rate of change of $f(x)=x^{2}$ for the interval $(x, x+h)$. Simplify so substitution of $h=0$ does not yield $\frac{0}{0}$. What is the value when $x=2, h=4$? Sketch the situation by hand.
5. Compute the average rate of change of $f(x)=\sqrt{x-1}$ for the interval $(x, x+h)$. Simplify so substitution of $h=0$ does not yield $\frac{0}{0}$. What is the value when $x=2, h=4$? Sketch the situation by hand.
6. Compute the average rate of change of $f(x)=\frac{1}{x-1}$ for the interval $(x, x+h)$. Simplify so substitution of $h=0$ does not yield $\frac{0}{0}$. What is the value when $x=2, h=4$? Sketch the situation by hand.
7. Given $f(x)=x^{2}-2$, simplify the quantity $\frac{f(x+h)-f(x-h)}{2 h}$ so that substitution of $h=0$ does not give $\frac{0}{0}$.

Note: The quantity $\frac{f(x+h)-f(x-h)}{2 h}$ is actually the average rate of change of f over the interval $(x-h, x+h)$. Do you think you could draw a sketch showing this situation? I'll include a sketch for $x=2, h=4$ in my solution if you want to try it.
8. Simplify as much as possible the expression for the average rate of change of the function f over the interval $(x, x+h)$,

$$
\text { Average Rate of Change }=\frac{f(x+h)-f(x)}{h},
$$

where $f(x)=3 x^{2}-5 x+6$.

Solutions

1. Using the vertical line test, we see only (a) and (d) represent functions.

2. At the moment, there are two things to look for when determining domain: division by zero, and square roots. Division by zero occurs when $x-2=0 \Rightarrow x=2$. So, $x=2$ is not in the domain.
The quantity we are taking the square root of must be greater than or equal to zero:
$x^{2}-1 \geq 0 \Rightarrow x^{2} \geq 1 \Rightarrow x \leq-1$ or $x \geq 1$.
So, the domain requires $x \leq-1$ or $x \geq 1$ and $x \neq 2$. We can write this in a more compact form using interval notation: $x \in(-\infty,-1] \cup[1,2) \cup(2, \infty)$.

Use a computer to get a sketch to verify:

3. Range is a bit tricky, since we have to think about what comes out of the function. The output of $\sqrt{4-x}$ is $[0, \infty)$. If we add five to that, we get for the range $y \in[5, \infty)$.

Use a computer to get a sketch to verify:

4. The function is a power function, so expect to factor out.

$$
\begin{aligned}
f(x) & =x^{2} \\
f(x+h) & =(x+h)^{2}=x^{2}+2 x h+h^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Average Rate of Change } & =\frac{f(x+h)-f(x)}{h} \\
& =\frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\frac{2 x h+h^{2}}{h} \\
& =\frac{h(2 x+h)}{h} \\
& =2 x+h
\end{aligned}
$$

When $x=2$ and $h=4$, the average rate of change on the interval $(x, x+h)=(2,6)$ is $2(2)+(4)=8$. Sketch:

5. The function is a square root function, so expect to rationalize.

$$
\begin{aligned}
f(x) & =\sqrt{x-1} \\
f(x+h) & =\sqrt{(x+h)-1}=\sqrt{x+h-1}
\end{aligned}
$$

$$
\begin{aligned}
\text { Average Rate of Change } & =\frac{f(x+h)-f(x)}{h} \\
& =\frac{\sqrt{x+h-1}-\sqrt{x-1}}{h} \\
& =\frac{\sqrt{x+h-1}-\sqrt{x-1}}{h} \cdot \frac{\sqrt{x+h-1}+\sqrt{x-1}}{\sqrt{x+h-1}+\sqrt{x-1}} \\
& =\frac{(x+h-1)-(x-1)}{h(\sqrt{x+h-1}+\sqrt{x-1})} \\
& =\frac{\not x+h-1-\not x \nmid 1}{h(\sqrt{x+h-1}+\sqrt{x-1})} \\
& =\frac{\not \hbar}{h(\sqrt{x+h-1}+\sqrt{x-1})} \\
& =\frac{1}{\sqrt{x+h-1}+\sqrt{x-1}}
\end{aligned}
$$

When $x=2$ and $h=4$, the average rate of change on the interval $(x, x+h)=(2,6)$ is $\frac{1}{\sqrt{(2)+(4)-1}+\sqrt{2-1}}=\frac{1}{\sqrt{5}+1}$. Sketch:

Notice that this is the correct average rate of change, since:

$$
\begin{aligned}
\frac{1}{\sqrt{5}+1} & =\frac{1}{\sqrt{5}+1} \cdot \frac{\sqrt{5}-1}{\sqrt{5}-1} \text { rationalize denominator } \\
& =\frac{\sqrt{5}-1}{5-1}=\frac{\sqrt{5}-1}{4}
\end{aligned}
$$

Either answer is acceptable.
6. The function has a fraction (it's what we will call a rational function), so expect to find a common denominator.

$$
\begin{aligned}
f(x) & =\frac{1}{x-1} \\
f(x+h) & =\frac{1}{(x+h)-1}=\frac{1}{x+h-1}
\end{aligned}
$$

$$
\begin{aligned}
\text { Average Rate of Change } & =\frac{f(x+h)-f(x)}{h} \\
& =\frac{\frac{1}{x+h-1}-\frac{1}{x-1}}{h} \\
& =\frac{1}{h}\left(\frac{1}{x+h-1}-\frac{1}{x-1}\right) \\
& =\frac{1}{h}\left(\frac{x-1}{(x+h-1)(x-1)}-\frac{x+h-1}{(x+h-1)(x-1)}\right) \\
& =\frac{1}{h}\left(\frac{x-\not 1-\not x-h+\not 1}{(x+h-1)(x-1)}\right) \\
& =\frac{1}{\not h}\left(\frac{-h}{(x+h-1)(x-1)}\right) \\
& =\frac{-1}{(x+h-1)(x-1)}
\end{aligned}
$$

When $x=2$ and $h=4$, the average rate of change on the interval $(x, x+h)=(2,6)$ is $\frac{-1}{(x+h-1)(x-1)}=$ $\frac{-1}{((2)+(4)-1)((2)-1)}=-\frac{1}{5}$.
Sketch:

7. The function is a power function, so expect to factor out.

$$
\begin{aligned}
f(x) & =x^{2}-2 \\
f(x+h) & =(x+h)^{2}-2=x^{2}+2 x h+h^{2}-2 \\
f(x-h) & =(x-h)^{2}-2=x^{2}-2 x h+h^{2}-2 \\
\frac{f(x+h)-f(x-h)}{2 h} & =\frac{\left(x^{2}+2 x h+h^{2}-2\right)-\left(x^{2}-2 x h+h^{2}-2\right)}{2 h} \\
& =\frac{x^{2}+2 x h+h^{2}-2-x^{2}+2 x h-h^{2}+2}{2 h} \\
& =\frac{\not x^{\not 2}+2 x h+\not 2^{\mathscr{}}-\not 2-\not 2^{22}+2 x h-\not h^{22}+\not 2}{2 h} \\
& =\frac{4 x h}{2 h} \\
& =2 x
\end{aligned}
$$

Notice it doesn't, in this case depend on h !
You weren't asked to do this, but here is a sketch of the situation:
When $x=2$ and $h=4$, the average rate of change on the interval $(x-h, x+h)=(2-4,2+4)=(-2,6)$ is $2(2)=4$. Sketch:

8. Simplify as much as possible the expression for the average rate of change of the function f over the interval $(x, x+h)$,

$$
\text { Average Rate of Change }=\frac{f(x+h)-f(x)}{h},
$$

where $f(x)=3 x^{2}-5 x+6$.
First, let's simplify some of the quantities we need, and get the functional substitution done correctly. The tricky one is $f(x+h)$, which we find as:

$$
\begin{aligned}
f(\quad) & =3(\quad)^{2}-5(\quad)+6 \\
f(x+h) & =3(x+h)^{2}-5(x+h)+6 \\
& =3\left(x^{2}+2 x h+h^{2}\right)-5 x-5 h+6 \\
& =3 x^{2}+6 x h+3 h^{2}-5 x-5 h+6
\end{aligned}
$$

Now we can simplify the average rate of change.

$$
\begin{aligned}
\text { Average Rate of Change } & =\frac{f(x+h)-f(x)}{h} \\
& =\frac{\left(3 x^{2}+6 x h+3 h^{2}-5 x-5 h+6\right)-\left(3 x^{2}-5 x+6\right)}{h} \\
& =\frac{3 x^{2}+6 x h+3 h^{2}-5 x-5 h+6-3 x^{2}+5 x-6}{h} \\
& =\frac{6 x h+3 h^{2}-5 h}{h} \\
& =\frac{h(6 x+3 h-5)}{h} \\
& =6 x+3 h-5
\end{aligned}
$$

