Questions

Note: In Section 2.3 we will learn a significantly better way to sketch graphs than using a table of ordered pairs, which involves graphical transformations. Using a table of ordered pairs you can miss important features of the function.

1. Make a table listing some ordered pairs for the function $f(x)=\left\{\begin{array}{l}\sqrt{-x} \text { if } x<0 \\ -\sqrt{x} \text { if } x \geq 0\end{array}\right.$

Then, sketch the graph and state the domain and range, and identify any intervals in which f is increasing, decreasing, or constant.
2. Make a table listing some ordered pairs for the function $f(x)=\left\{\begin{array}{l}8+2 x \text { if } x \leq-2 \\ x^{3} \text { if }-2<x<2 \\ 8-2 x \text { if } x \geq 2\end{array}\right.$

Then, sketch the graph and state the domain and range, and identify any intervals in which f is increasing, decreasing, or constant.

Solutions

1. Make a table listing some ordered pairs for the function $f(x)=\left\{\begin{array}{l}\sqrt{-x} \text { if } x<0 \\ -\sqrt{x} \text { if } x \geq 0\end{array}\right.$

Then, sketch the graph and state the domain and range, and identify any intervals in which f is increasing, decreasing, or constant.

x	$y=f(x)$
-10	3.16
-8	2.82
-6	2.45
-4	2
-2	1.41
0	0
2	-1.41
4	-2
6	-2.45
8	-2.82
10	-3.16

Note: this function appears
to be continuous.
2. Make a table listing some ordered pairs for the function $f(x)=\left\{\begin{array}{l}8+2 x \text { if } x \leq-2 \\ x^{3} \text { if }-2<x<2 \\ 8-2 x \text { if } x \geq 2\end{array}\right.$

Then, sketch the graph and state the domain and range, and identify any intervals in which f is increasing, decreasing, or constant.

$$
\begin{aligned}
& \text { domain: } x \in \mathbb{R} \\
& \text { range: } y \in(-\infty, 8) \\
& \text { increasing } x \in(-\infty,-z) \\
& \text { and }(-2,2) \\
& \text { decreasing } x \in(z, \infty) \\
& \text { Note this function is not } \\
& \text { continuous! }
\end{aligned}
$$

