Questions

1. Given that f(x) = 3x + 17 and $g(x) = \frac{1}{1+x}$, compute $(f \circ g)(x)$ and $(g \circ f)(x)$. Do not worry about the domains.

2. If $f(x) = \sqrt{x-1}$ and $g(x) = x^4$, find the functions fg, f - g, f + g, f/g and each of their domains.

3. Find $(f \circ g)(3)$ and $(g \circ f)(-2)$ when $f(x) = x^2 - 1$ and g(x) = 2x - 3.

4. Find f(g(x)) and g(f(x)) if f(x) = 1/(x-1) and $g(x) = \sqrt{x}$. State the domain of each.

5. Decompose the function $f(x) = \frac{1}{\cos(x^3)}$ so that each decomposed function is a more basic functions.

Solutions

1. Given that f(x) = 3x + 17 and $g(x) = \frac{1}{1+x}$, compute $(f \circ g)(x)$ and $(g \circ f)(x)$. Do not worry about the domains.

$$(f \circ g)(x) = f(g(x))$$

= $f(\frac{1}{1+x})$
= $3(\frac{1}{1+x}) + 17$
= $\frac{3}{1+x} + 17$
 $(g \circ f)(x) = g(f(x))$
= $g(3x + 17)$
= $\frac{1}{1+(3x+17)} = \frac{1}{3x+18}$

2. If $f(x) = \sqrt{x-1}$ and $g(x) = x^4$, find the functions (fg)(x), (f-g)(x), (f+g)(x), (f/g)(x) and each of their domains.

Domain of f is $x \in [1, \infty) = A$. Domain of g is $x \in (-\infty, \infty) = B$. Intersection $A \cap B = [1, \infty)$.

$$(fg)(x) = f(x)g(x) = \sqrt{x-1} \cdot x^4 = x^4 \sqrt{x-1}, \text{ domain } [1,\infty) (f-g)(x) = f(x) - g(x) = \sqrt{x-1} - x^4, \text{ domain } [1,\infty) (f+g)(x) = f(x) + g(x) = \sqrt{x-1} + x^4, \text{ domain } [1,\infty) (f/g)(x) = f(x)/g(x) = \frac{\sqrt{x-1}}{x^4}, \text{ domain } [1,0) \cup (0,\infty)$$

3. Find $(f \circ g)(3)$ and $(g \circ f)(-2)$ when $f(x) = x^2 - 1$ and g(x) = 2x - 3.

$$(f \circ g)(3) = f(g(3))$$

= $f(2(3) - 3)$
= $f(3)$
= $(3)^2 - 1$
= 8
$$(g \circ f)(-2) = g(f(-2))$$

= $g((-2)^2 - 1)$
= $g(3)$
= $2(3) - 3$
= 3

4. Find f(g(x)) and g(f(x)) if f(x) = 1/(x-1) and $g(x) = \sqrt{x}$. State the domain of each.

$$f(g(x)) = f(\sqrt{x})$$
$$= \frac{1}{\sqrt{x} - 1}$$

The domain of f(g(x)) is $x \in [0, 1) \cup (1, \infty)$.

$$g(f(x)) = g\left(\frac{1}{x-1}\right)$$
$$= \sqrt{\frac{1}{x-1}}$$
$$= \frac{1}{\sqrt{x-1}}$$

The domain of g(f(x)) is $x \in (1, \infty)$.

5. Decompose the function $f(x) = \frac{1}{\cos x^3}$ so that each decomposed function is a more basic functions. Two evaluate this, you would cube, then take the cosine, then take the reciprocal. This gives you the decomposition. Pick $z(x) = x^3$, $h(x) = \cos x$, $g(x) = \frac{1}{x}$. Check:

$$f(x) = g(h(z(x))) = g(h(x^3)) = g(\cos x^3) = \frac{1}{\cos x^3}.$$