Questions

1. Given the parametric equations

$$
x=t+1, \quad y=t^{2}-2 t
$$

Find the points determined by $t=-3,-2,-1,0,1,2,3$.
Find a direct relationship between x and y. Is this an explicit function relationship?
Graph the relationship in the $x y$-plane.
2. Find a formula for $f^{-1}(x)$ given $f(x)=\sqrt{x-3}$. Give the domain of $f^{-1}(x)$.
3. Find a formula for $f^{-1}(x)$ given $f(x)=(x-2)^{1 / 3}$. Give the domain of $f^{-1}(x)$.
4. Find a formula $f^{-1}(x)$ for the inverse of the function (you do not have to discuss domain and range):

$$
f(x)=\frac{1+5 x}{3-2 x}
$$

5. Find a formula $f^{-1}(x)$ for the inverse of the function $f(x)=-\sqrt{2 x-1}+1$. What are the domain and range for f ? The domain and range for f^{-1} ?

Solutions

1. Given the parametric equations

$$
x=t+1, \quad y=t^{2}-2 t
$$

Find the points determined by $t=-3,-2,-1,0,1,2,3$.
Find a direct relationship between x and y. Is this an explicit function relationship?
Graph the relationship in the $x y$-plane.

t	$x=t+1$	$y=t^{2}-2 t$
-3	-2	15
-2	-1	8
-1	0	3
0	1	0
1	2	-1
2	3	0
3	4	3

To find a direct relationship, we need to eliminate the parameter t from the two equations.
Solve $x=t+1$ for $t: t=x-1$.
Substitute $t=x-1$ into the equation $y=t^{2}-2 t$:

$$
\begin{aligned}
y & =t^{2}-2 t \\
& =(x-1)^{2}-2(x-1) \\
& =x^{2}-2 x+1-2 x+2 \\
& =x^{2}-4 x+3
\end{aligned}
$$

The function is a quadratic. We could sketch this by hand, but here I want to check that the sketch agrees with the table of values we found above, so I will use a computer to sketch it for me.
Here is a sketch I created using Mathematica:

Notice the points on the sketch agree with the table we created above.
2. Find a formula for $f^{-1}(x)$ given $f(x)=\sqrt{x-3}$. Give the domain of $f^{-1}(x)$.

$$
\begin{aligned}
y & =\sqrt{x-3} \quad \text { Step 1: let } y=f(x) \\
x & =\sqrt{y-3} \quad \text { Step 2: Flip } x \text { and } y \\
x^{2} & =(y-3) \quad \text { Step 3: Solve for } y \\
x^{2}+3 & =y \\
y & =x^{2}+3 \\
f^{-1}(x) & =x^{2}+3 \quad \text { Finally, } f^{-1}(x)=y
\end{aligned}
$$

The function f has a range of $y \in[0, \infty)$. This imposes a restriction on the domain of $f^{-1}(x)$. Since $x^{2}+3$ has domain $x \in(-\infty, \infty)$, the domain of $f^{-1}(x)$ is $x \in[0, \infty)$.
It wasn't asked for in the question, but here is a sketch I created using Mathematica, that shows the graphical reflection of the inverse function about the lines $y=x$.

3. Find a formula for $f^{-1}(x)$ given $f(x)=(x-2)^{1 / 3}$. Give the domain of $f^{-1}(x)$.

$$
\begin{aligned}
y & =(x-2)^{1 / 3} \quad \text { Step 1: let } y=f(x) \\
x & =(y-2)^{1 / 3} \quad \text { Step 2: Flip } x \text { and } y \\
x^{3} & =(y-2) \quad \text { Step 3: Solve for } y \\
x^{3}+2 & =y \\
y & =x^{3}+2 \\
f^{-1}(x) & =x^{3}+2 \quad \text { Finally, } f^{-1}(x)=y
\end{aligned}
$$

Since there is no restriction imposed by f, the domain of $f^{-1}(x)$ is $x \in(-\infty, \infty)$.
4. Find a formula $f^{-1}(x)$ for the inverse of the function (you do not have to discuss domain and range):

$$
f(x)=\frac{1+5 x}{3-2 x}
$$

$$
\begin{aligned}
y & =\frac{1+5 x}{3-2 x} \quad \text { Step 1: let } y=f(x) \\
x & =\frac{1+5 y}{3-2 y} \quad \text { Step 2: Flip } x \text { and } y \\
(3-2 y) x & =1+5 y \\
3 x-2 x y & =1+5 y \\
-2 x y-5 y & =1-3 x \\
(-2 x-5) y & =1-3 x \\
y & =\frac{1-3 x}{-2 x-5} \quad=\frac{3 x-1}{2 x+5} \\
f^{-1}(x) & =\frac{3 x-1}{2 x+5} \quad \text { Finally, we have } f^{-1}(x)=y=\frac{3 x-1}{2 x+5}
\end{aligned}
$$

5. Find a formula $f^{-1}(x)$ for the inverse of the function $f(x)=-\sqrt{2 x-1}+1$. What are the domain and range for f ? The domain and range for f^{-1} ?
Let's do the domain and ranges of f first. Since we must take the square root of something greater than or equal to zero, we require

$$
2 x-1 \geq 0 \Rightarrow x \geq \frac{1}{2}
$$

The domain of f is $x \geq 1 / 2$.
Since the square root is always less than or equal to zero (since we have a minus in front), and then we are adding one, the range of f is $y \in(-\infty, 1]$.
These are simply flipped for the inverse function.
The domain of f^{-1} is $x \in(-\infty, 1]$, and the range of f^{-1} is $y \geq 1 / 2$.

$$
\begin{aligned}
y & =-\sqrt{2 x-1}+1 \quad \text { Step 1: let } y=f(x) \\
x & =-\sqrt{2 y-1}+1 \quad \text { Step 2: Flip } x \text { and } y \\
(x-1)^{2} & =2 y-1 \\
2 y & =(x-1)^{2}+1 \\
y & =\frac{(x-1)^{2}+1}{2} \\
f^{-1}(x) & =\frac{(x-1)^{2}+1}{2} \quad \text { Finally, we have } f^{-1}(x)=y=\frac{(x-1)^{2}+1}{2}
\end{aligned}
$$

Summary:

$$
\begin{aligned}
& f(x)=-\sqrt{2 x-1}+1 \text { with domain } x \in(1 / 2, \infty), \text { range } y \in(-\infty, 1) \\
& f^{-1}(x)=\frac{(x-1)^{2}+1}{2} \text { with domain } x \in(-\infty, 1), \text { range } y \in(1 / 2, \infty)
\end{aligned}
$$

