Questions

1. State the power and constant of variation for the function $f(x)=-2 x^{-3}$. Graph the function and analyze it (domain, range, extrema, etc.).
2. The power P (in watts) produced by a windmill is proportional to the cube of the wind speed v (in mph). If a wind of 10 mph generates 15 watts of power, how much power is generated by winds of 20 , 40 , and 80 mph? Make a table and explain the pattern.
3. Match the function to its graph
(i) $y=-2 x^{4}$
(ii) $y=-2 x^{1 / 4}$
(iii) $y=x^{1 / 4}$
(iv) $y=x^{-2}$
(v) $y=-\frac{1}{4} x^{-2}$
(vi) $y=x^{3}$

(a)

(d)

(b)

(e)

(c)

(f)
4. Is the function $f(x)=\frac{1}{3} x^{-3}$ even, odd, or neither? Is it continuous?
5. Is the function $f(x)=x^{1 / 3}$ even, odd, or neither?
6. Evaluate the following limits by thinking of what the sketch of the function looks like.
(a) $\lim _{x \rightarrow-\infty} x^{4}=$
(b) $\lim _{x \rightarrow-\infty} x^{3}=$
(c) $\lim _{x \rightarrow-\infty} x^{1 / 2}=$
(d) $\lim _{x \rightarrow \infty} x^{3}=$

Solutions

1. State the power and constant of variation for the function $f(x)=-2 x^{-3}$. Graph the function and analyze it.

The function has power -3 . Since the power is less than zero, this is an inverse variation function. The constant of variation is -2 .

Sketch (from the sketch of the basic function $y=x^{-1}$, so sketched by hand, not with a computer, although I used a computer to draw the sketches).

Domain: $x \in(-\infty, 0) \cup(0, \infty)$.
Range: $y \in(-\infty, 0) \cup(0, \infty)$.
Continuous: the function is discontinuous at $x=0$.
Increasing/Decreasing: The function is increasing for $x \in(-\infty, 0)$, and increasing for $x \in(0, \infty)$.
Symmetric: The function is odd $(f(-x)=f(x))$.
Boundedness: The function is not bounded above or below.
Extrema: none.
2. The power P (in watts) produced by a windmill is proportional to the cube of the wind speed v (in mph). If a wind of 10 mph generates 15 watts of power, how much power is generated by winds of 20,40 , and 80 mph ? Make a table and explain the pattern.

We are told the power is proportional to the cube of the wind speed. Converting that to mathematics leads us to write

$$
P \propto v^{3}
$$

where P is the power in watts and v is the wind speed in mph. The symbol between them indicates that they are proportional to each other.

We need to know a relation for when they are equal, and we can get that by inserting a proportionality constant k :

$$
P=k v^{3}
$$

You could have started your solution with this relation. We don't know the value of k yet, but we can find it using some of the information given.

We are told that when $v=10 \mathrm{mph}, P=15$ watts, and we can use this do determine the constant k :

$$
\begin{aligned}
P & =k v^{3} \\
15 & =k 10^{3} \\
\frac{15}{1000} & =k \\
k & =\frac{3}{200}
\end{aligned}
$$

and we can write the relation between wind speed in mph and power in watts as:

$$
P=\frac{3}{200} v^{3} .
$$

Now we can construct the table that is asked for:

$v(\mathrm{mph})$	$P=\frac{3}{2000} v^{3}$ (watts)
10	15 (this data was given)
20	120
40	960
80	7680

The values for P at wind speeds of $20,40,80 \mathrm{mph}$ were calculated using the relation. As the wind speed increases, the power grows rapidly, by a cubic relation. The proportionality constant $k=3 / 200$ scales the cubic growth.
3. Match the function to its graph

4. Is the function $f(x)=\frac{1}{3} x^{-3}$ even, odd, or neither? Is it continuous?

To check even/odd/neither, we evaluate $f(-x)$ and see what it simplifies to.

$$
f(-x)=\frac{1}{3}(-x)^{-3}=\frac{1}{3} \cdot \frac{1}{(-x)^{3}}=-\frac{1}{3} \cdot \frac{1}{x^{3}}=-\frac{1}{3} x^{-3}=-f(x)
$$

So, since $f(-x)=-f(x)$, we have that f is odd. Since it is not defined at $x=0$, it is not continuous at $x=0$.
5. Is the function $f(x)=x^{1 / 3}$ even, odd, or neither?

$$
f(-x)=(-x)^{1 / 3}=-x^{1 / 3}=-f(x)
$$

So, since $f(-x)=-f(x)$, we have that f is odd.
6. Evaluate the following limits by thinking of what the sketch of the function looks like.
(a) $\lim _{x \rightarrow-\infty} x^{4}=\infty$
(b) $\lim _{x \rightarrow-\infty} x^{3}=-\infty$
(c) $\lim _{x \rightarrow-\infty} x^{1 / 2}$ does not exist, since the domain of $x^{1 / 2}=\sqrt{x}$ is $x>0$
(d) $\lim _{x \rightarrow \infty} x^{3}=\infty$

