When adding or subtracting rational expressions you might have to do a lot of work. In general, you might need to

- factor any polynomials in the expressions
- get a common denominator for the rational expressions (the critical step!)
- add or subtract using $\frac{a}{c} \pm \frac{b}{c}=\frac{a \pm b}{c}$
- simplify the numerator (this could even involve another factoring!)
- simplify further by canceling any common terms in the numerator and denominator

Be careful, show all your work, and make sure minus signs get distributed correctly; for example, $-3 x(x+4)$ is equal to $-3 x^{2}-12 x$ NOT $-3 x^{2}+12 x$.

Questions

1. Simplify $\frac{x^{2}+3 x-10}{x^{2}+x-20} \cdot \frac{x^{2}-3 x-4}{x^{2}+4 x+3}$.
2. Simplify $\frac{x^{2}-x-20}{x^{2}-3 x-10} \cdot \frac{x^{2}+7 x+10}{x^{2}+4 x-5}$.
3. Simplify $(6 x-5) \div \frac{36 x^{2}-25}{6 x^{2}+17 x+10}$.
4. Simplify $\frac{4 x^{2}-9}{4 x^{2}+12 x+9} \div(6 x-9)$.
5. Simplify $\frac{3 x^{2}+12 x y+12 y^{2}}{x^{2}+4 x y+3 y^{2}} \div \frac{4 x+8 y}{x+y}$.
6. Simplify $\frac{5 y^{2}+17 y+6}{10 y^{2}+9 y+2} \cdot \frac{4 y^{2}-1}{2 y^{2}+5 y-3}$.
7. Simplify $\frac{x^{2}+8 x+15}{2 x^{2}+11 x+5} \div \frac{x^{2}+6 x+9}{2 x^{2}-7 x-4}$.
8. Simplify $\frac{8 x+3}{5 x+7}-\frac{6 x+10}{5 x+7}$.
9. Find the lowest common denominator for $\frac{1}{x^{2}-9}$ and $\frac{1}{x+3}$.
10. Find the lowest common denominator for $\frac{1}{2 x^{2}-9 x-35}$ and $\frac{1}{4 x^{2}+20 x+25}$.
11. Simplify $\frac{8}{c d}+\frac{9}{d}$.
12. Simplify $\frac{2}{y-1}+\frac{2}{y+1}$.
13. Simplify $\frac{2}{3 x y}+\frac{1}{6 y z}$.
14. Simplify $\frac{6}{3 x-4}-\frac{5}{4 x-3}$.
15. Simplify $\frac{x}{x^{2}+2 x-3}-\frac{x}{x^{2}-5 x+4}$.
16. Simplify $\frac{3 x+5}{x^{2}+4 x+3}+\frac{-x+5}{x^{2}+2 x-3}$.
17. Simplify $\frac{2 x}{x^{2}+5 x+6}-\frac{x+1}{x^{2}+2 x-3}$.

Solutions

1. Simplify $\frac{x^{2}+3 x-10}{x^{2}+x-20} \cdot \frac{x^{2}-3 x-4}{x^{2}+4 x+3}$. Factor all polynomials:

$$
\begin{aligned}
x^{2}+3 x-10 & =(x-2)(x+5) \text { two numbers whose product is }-10 \text { sum is } 3:-2,5 \\
x^{2}-3 x-4 & =(x-4)(x+1) \text { two numbers whose product is }-4 \text { sum is }-3:-4,1 \\
x^{2}+x-20 & =(x+5)(x-4) \text { two numbers whose product is }-20 \text { sum is } 1:-4,5 \\
x^{2}+4 x+3 & =(x+3)(x+1) \text { two numbers whose product is } 3 \text { sum is } 4: 1,3 \\
\frac{x^{2}+3 x-10}{x^{2}+x-20} \cdot \frac{x^{2}-3 x-4}{x^{2}+4 x+3} & =\frac{\left(x^{2}+3 x-10\right)\left(x^{2}-3 x-4\right)}{\left(x^{2}+x-20\right)\left(x^{2}+4 x+3\right)} \text { Simplify polynomial multiplication. } \\
& =\frac{(x-2)(x+5)(x-4)(x+1)}{(x+5)(x-4)(x+3)(x+1)} \\
& =\frac{x-2}{x+3} \text { and } x-4 \neq 0, x+1 \neq 0, x+5 \neq 0
\end{aligned}
$$

2. Simplify $\frac{x^{2}-x-20}{x^{2}-3 x-10} \cdot \frac{x^{2}+7 x+10}{x^{2}+4 x-5}$. Factor all polynomials:

$$
\begin{aligned}
x^{2}-x-20 & =(x-5)(x+4) \text { two numbers whose product is }-20 \text { sum is }-1:-5,4 \\
x^{2}-3 x-10 & =(x-5)(x+2) \text { two numbers whose product is }-10 \text { sum is }-3:-5,2 \\
x^{2}+7 x+10 & =(x+5)(x+2) \text { two numbers whose product is } 10 \text { sum is } 7: 5,2 \\
x^{2}+4 x-5 & =(x+5)(x-1) \text { two numbers whose product is }-5 \text { sum is } 4: 5,-1 \\
\frac{x^{2}-x-20}{x^{2}-3 x-10} \cdot \frac{x^{2}+7 x+10}{x^{2}+4 x-5} & =\frac{\left(x^{2}-x-20\right)\left(x^{2}-3 x-10\right)}{\left(x^{2}+7 x+10\right)\left(x^{2}+4 x-5\right)} \text { Simplify polynomial multiplication. } \\
& =\frac{(x-5)(x+4)(x+5)(x+2)}{(x-5)(x+2)(x+5)(x-1)} \\
& =\frac{x+4}{x-1} \text { and } x+5 \neq 0, x-5 \neq 0, x+2 \neq 0
\end{aligned}
$$

3. Simplify $(6 x-5) \div \frac{36 x^{2}-25}{6 x^{2}+17 x+10}$. Factor all polynomials:

$$
\begin{aligned}
6 x^{2}+17 x+10 & =6 x^{2}+12 x+5 x+10 \text { two numbers whose product is } 60 \text { sum is } 17: 12,5 \\
& =6 x(x+2)+5(x+2) \text { Factor by grouping } \\
& =(6 x+5)(x+2) \\
36 x^{2}-25 & =(6 x-5)(6 x+5) \text { Difference of squares } \\
(6 x-5) \div \frac{36 x^{2}-25}{6 x^{2}+17 x+10} & =(6 x-5) \cdot \frac{6 x^{2}+17 x+10}{36 x^{2}-25} \text { Simplify polynomial division. } \\
& =\frac{(6 x-5)\left(6 x^{2}+17 x+10\right)}{\left(36 x^{2}-25\right)} \text { Simplify polynomial multiplication. } \\
& =\frac{(6 x-5)(6 x+5)(x+2)}{(6 x) 5)(6 x+5)} \\
& =x+2 \text { and } 6 x+5 \neq 0,6 x-5 \neq 0
\end{aligned}
$$

4. Simplify $\frac{4 x^{2}-9}{4 x^{2}+12 x+9} \div(6 x-9)$. Factor all polynomials:

$$
\begin{aligned}
4 x^{2}+12 x+9 & =4 x^{2}+6 x+6 x+9 \text { two numbers whose product is } 36 \text { sum is } 12: 6,6 \\
& =2 x(2 x+3)+3(2 x+3) \text { Factor by grouping } \\
& =(2 x+3)(2 x+3) \text { hey-this was a perfect square! } \\
4 x^{2}-9 & =(2 x+3)(2 x-3) \text { Difference of squares } \\
6 x-9 & =3(2 x-3) \text { common factor }
\end{aligned}
$$

$$
\begin{aligned}
\frac{4 x^{2}-9}{4 x^{2}+12 x+9} \div(6 x-9) & =\frac{4 x^{2}-9}{4 x^{2}+12 x+9} \cdot \frac{1}{(6 x-9)} \text { Simplify polynomial division. } \\
& =\frac{\left(4 x^{2}-9\right)}{\left(4 x^{2}+12 x+9\right)(6 x-9)} \text { Simplify polynomial multiplication. } \\
& =\frac{(2 x-3)(2 x+3)}{(2 x+3)(2 x+3) 3(2 x-3)} \\
& =\frac{1}{3(2 x+3)} \text { and } 2 x-3 \neq 0,2 x+3 \neq 0
\end{aligned}
$$

5. Simplify $\frac{3 x^{2}+12 x y+12 y^{2}}{x^{2}+4 x y+3 y^{2}} \div \frac{4 x+8 y}{x+y}$. Factor all polynomials (let the y tag along with the constants):

$$
\begin{aligned}
3 x^{2}+12 x y+12 y^{2} & =3 x^{2}+6 x y+6 x y+12 y^{2} \text { two numbers whose product is } 36 \text { sum is } 12: 6,6 \\
& =3 x(x+2 y)+6 y(x+2 y) \text { Factor by grouping } \\
& =(3 x+6 y)(x+2 y)=3(x+2 y)(x+2 y) \text { hey-this was a perfect square! } \\
x^{2}+4 x y+3 y^{2} & =(x+1 y)(x+3 y)=(x+y)(x+3 y) \text { two numbers whose product is } 3 \text { sum is } 4: 1,3 \\
4 x+8 y & =4(x+2 y) \text { common factor } \\
\frac{3 x^{2}+12 x y+12 y^{2}}{x^{2}+4 x y+3 y^{2}} \div \frac{4 x+8 y}{x+y} & =\frac{3 x^{2}+12 x y+12 y^{2}}{x^{2}+4 x y+3 y^{2}} \cdot \frac{x+y}{4 x+8 y} \text { Simplify polynomial division. } \\
& =\frac{\left(3 x^{2}+12 x y+12 y^{2}\right)(x+y)}{\left(x^{2}+4 x y+3 y^{2}\right)(4 x+8 y)} \text { Simplify polynomial multiplication. } \\
& =\frac{3(x+2 y)(x+2 y)(x+y)}{(x+y)(x+3 y) 4(x+2 y)} \\
& =\frac{3(x+2 y)}{4(x+3 y)} \text { and } x+2 y \neq 0, x+y \neq 0
\end{aligned}
$$

6. Simplify $\frac{5 y^{2}+17 y+6}{10 y^{2}+9 y+2} \cdot \frac{4 y^{2}-1}{2 y^{2}+5 y-3}$. Factor all polynomials:

$$
\begin{aligned}
5 y^{2}+17 y+6 & =5 y^{2}+15 y+2 y+6 \text { two numbers whose product is } 30 \text { sum is } 17: 15,2 \\
& =5 y(y+3)+2(y+3) \text { Factor by grouping } \\
& =(5 y+2)(y+3) \\
10 y^{2}+9 y+2 & =10 y^{2}+5 y+4 y+2 \text { two numbers whose product is } 20 \text { sum is } 9: 5,4 \\
& =5 y(2 y+1)+2(2 y+1) \text { Factor by grouping } \\
& =(5 y+2)(2 y+1) \\
2 y^{2}+5 y-3 & =2 y^{2}+6 y-1 y-3 \text { two numbers whose product is }-6 \text { sum is } 5: 6,-1 \\
& =2 y(y+3)-1(y+3) \text { Factor by grouping } \\
& =(2 y-1)(y+3) \\
4 y^{2}-1 & =(2 y-1)(2 y+1) \text { difference of squares }
\end{aligned}
$$

$$
\begin{aligned}
\frac{5 y^{2}+17 y+6}{10 y^{2}+9 y+2} \cdot \frac{4 y^{2}-1}{2 y^{2}+5 y-3} & =\frac{\left(5 y^{2}+17 y+6\right)\left(4 y^{2}-1\right)}{\left(10 y^{2}+9 y+2\right)\left(2 y^{2}+5 y-3\right)} \text { Simplify polynomial multiplication. } \\
& =\frac{(5 y+2)(y+3)(2 y+1)(2 y-1)}{(5 y+2)(2 y+1)(2 y-1)(y+3))} \\
& =1 \text { and } 5 y+2 \neq 0, y+3 \neq 0,2 y+1 \neq 0,2 y-1 \neq 0
\end{aligned}
$$

7. Simplify $\frac{x^{2}+8 x+15}{2 x^{2}+11 x+5} \div \frac{x^{2}+6 x+9}{2 x^{2}-7 x-4}$. Factor all polynomials:

$$
\begin{aligned}
x^{2}+8 x+15 & =(x+5)(x+3) \text { two numbers whose product is } 15 \text { sum is } 8: 5,3 \\
2 x^{2}+11 x+5 & =2 x^{2}+10 x+1 x+5 \text { two numbers whose product is } 10 \text { sum is } 11: 10,1 \\
& =2 x(x+5)+1(x+5) \text { Factor by grouping } \\
& =(2 x+1)(x+5) \\
2 x^{2}-7 x-4 & =2 x^{2}-8 x+1 x-4 \text { two numbers whose product is }-8 \text { sum is }-7:-8,1 \\
& =2 x(x-4)+1(x-4) \text { Factor by grouping } \\
& =(2 x+1)(x-4) \\
x^{2}+6 x+9 & =(x+3)(x+3) \text { two numbers whose product is } 9 \text { sum is } 6: 3,3 \\
\frac{x^{2}+8 x+15}{2 x^{2}+11 x+5} \div \frac{x^{2}+6 x+9}{2 x^{2}-7 x-4} & =\frac{x^{2}+8 x+15}{2 x^{2}+11 x+5} \cdot \frac{2 x^{2}-7 x-4}{x^{2}+6 x+9} \text { Simplify polynomial division. } \\
& =\frac{\left(x^{2}+8 x+15\right)\left(2 x^{2}-7 x-4\right)}{\left(2 x^{2}+11 x+5\right)\left(x^{2}+6 x+9\right)} \cdot \frac{2 x^{2}-7 x-4}{x^{2}+6 x+9} \text { Simplify polynomial multiplication. } \\
& =\frac{(x+5)(x+3)(2 x+1)(x-4)}{(2 x+1)(x+5)(x+3)(x+3)} \\
& =\frac{x-4}{x+3} \text { and } x+5 \neq 0, x+3 \neq 0,2 x+1 \neq 0
\end{aligned}
$$

8. The denominators are the same, so we can subtract immediately.

$$
\begin{aligned}
\frac{8 x+3}{5 x+7}-\frac{6 x+10}{5 x+7} & =\frac{(8 x+3)-(6 x+10)}{5 x+7} \text { subtract rational expressions with common denominators } \\
& =\frac{8 x+3-6 x-10}{5 x+7} \\
& =\frac{2 x-7}{5 x+7}
\end{aligned}
$$

9. To find lowest common denominator we need to factor.

$$
\begin{aligned}
x^{2}-9 & =(x+3)(x-3) \text { difference of squares } \\
x+3 & =(x+3)
\end{aligned}
$$

The lowest common denominator is $(x+3)(x-3)$. I've highlighted the overlap in red.
10. Factor everything first.

$$
\begin{aligned}
2 x^{2}-9 x-35 & =2 x^{2}-14 x+5 x-35 \text { need two numbers whose product is }-70 \text { and sum is }-9:-14,5 \\
& =2 x(x-7)+5(x-7) \text { factor by grouping } \\
& =(2 x+5)(x-7) \\
4 x^{2}+20 x+25 & =4 x^{2}+10 x+10 x+25 \text { need two numbers whose product is } 100 \text { and sum is } 20: 10,10 \\
& =2 x(2 x+5)+5(2 x+5) \text { factor by grouping } \\
& =(2 x+5)(2 x+5) \text { this was a perfect square } \\
2 x^{2}-9 x-35 & =(2 x+5)(x-7) \\
4 x^{2}+20 x+25 & =(2 x+5)(2 x+5) \\
\text { LCD is } & (2 x+5)(2 x+5)(x-7)
\end{aligned}
$$

11. Nothing needs to be factored.

$$
\begin{aligned}
\frac{8}{c d}+\frac{9}{d} & =\frac{8}{c d}+\frac{9 \cdot c}{d \cdot c} \text { multiply by appropriate quantities to make the denominators the same. } \\
& =\frac{8}{c d}+\frac{9 c}{c d} \\
& =\frac{8+9 c}{c d} \text { add rational expressions with common denominators }
\end{aligned}
$$

12. Nothing needs to be factored.

$$
\begin{aligned}
\frac{2}{y-1}+\frac{2}{y+1} & =\frac{2(y+1)}{(y-1)(y+1)}+\frac{2(y-1)}{(y+1)(y-1)} \text { multiply by appropriate quantities to make the denominators the same. } \\
& =\frac{2(y+1)+2(y-1)}{(y-1)(y+1)} \text { add rational expressions with common denominators } \\
& =\frac{2 y+2+2 y-2}{(y-1)(y+1)} \text { simplify numerator } \\
& =\frac{4 y}{(y-1)(y+1)}
\end{aligned}
$$

13. Nothing needs to be factored.

$$
\begin{aligned}
\frac{2}{3 x y}+\frac{1}{6 y z} & =\frac{2(2 z)}{3 x y(2 z)}+\frac{1(x)}{6 y z(x)} \\
& =\frac{4 z}{6 x y z}+\frac{x}{6 x y z} \\
& =\frac{4 z+x}{6 x y z}
\end{aligned}
$$

14. Nothing needs to be factored.

$$
\begin{aligned}
\frac{6}{3 x-4}-\frac{5}{4 x-3} & =\frac{6(4 x-3)}{(3 x-4)(4 x-3)}-\frac{5(3 x-4)}{(4 x-3)(3 x-4)} \\
& =\frac{6(4 x-3)-5(3 x-4)}{(3 x-4)(4 x-3)} \\
& =\frac{24 x-18-15 x+20}{(3 x-4)(4 x-3)} \\
& =\frac{9 x+2}{(3 x-4)(4 x-3)}
\end{aligned}
$$

15. We need to factor here.

$$
\begin{aligned}
& x^{2}+2 x-3=(x+3)(x-1) \text { two numbers whose product is }-3 \text { sum is } 2: 3,-1 \\
& x^{2}-5 x+4=(x-4)(x-1) \text { two numbers whose product is } 4 \text { sum is }-5:-4,-1
\end{aligned}
$$

$$
\begin{aligned}
\frac{x}{x^{2}+2 x-3}-\frac{x}{x^{2}-5 x+4} & =\frac{x}{(x+3)(x-1)}-\frac{x}{(x-4)(x-1)} \\
& =\frac{x(x-4)}{(x+3)(x-1)(x-4)}-\frac{x(x+3)}{(x-4)(x-1)(x+3)} \text { get common denominator } \\
& =\frac{x(x-4)-x(x+3)}{(x+3)(x-1)(x-4)} \text { subtract now that we have common denominator } \\
& =\frac{x^{2}-4 x-x^{2}-3 x}{(x+3)(x-1)(x-4)} \text { simplify } \\
& =\frac{-7 x}{(x+3)(x-1)(x-4)}
\end{aligned}
$$

16. We need to factor here.

$$
\begin{aligned}
x^{2}+4 x+3 & =(x+3)(x+1) \text { two numbers whose product is } 3 \text { sum is } 4: 3,1 \\
x^{2}+2 x-3 & =(x+3)(x-1) \text { two numbers whose product is }-3 \text { sum is } 2: 3,-1 \\
\frac{3 x+5}{x^{2}+4 x+3}+\frac{-x+5}{x^{2}+2 x-3} & =\frac{3 x+5}{(x+3)(x+1)}+\frac{5-x}{(x+3)(x-1)} \text { factor } \\
& =\frac{(3 x+5)(x-1)}{(x+3)(x+1)(x-1)}+\frac{(5-x)(x+1)}{(x+3)(x-1)(x+1)} \\
& =\frac{(3 x+5)(x-1)}{(x+3)(x+1)(x-1)}+\frac{(5-x)(x+1)}{(x+3)(x-1)(x+1)} \text { get common denominator } \\
& =\frac{(3 x+5)(x-1)+(5-x)(x+1)}{(x+3)(x+1)(x-1)} \text { add } \\
& =\frac{3 x^{2}+2 x-5-x^{2}+4 x+5}{(x+3)(x+1)(x-1)} \text { simplify numerator: distribute } \\
& =\frac{2 x^{2}+6 x}{(x+3)(x+1)(x-1)} \text { simplify numerator: collect like terms } \\
& =\frac{2 x(x+3)}{(x+3)(x+1)(x-1)} \text { simplify: factor numerator } \\
& =\frac{2 x}{(x+1)(x-1)} \text { and } x+3 \neq 0
\end{aligned}
$$

17. We need to factor here.

$$
\begin{aligned}
x^{2}+5 x+6 & =(x+3)(x+2) \text { two numbers whose product is } 6 \text { sum is } 5: 3,2 \\
x^{2}+2 x-3 & =(x+3)(x-1) \text { two numbers whose product is }-3 \text { sum is } 2: 3,-1 \\
\frac{2 x}{x^{2}+5 x+6}-\frac{x+1}{x^{2}+2 x-3} & =\frac{2 x}{(x+3)(x+2)}-\frac{x+1}{(x+3)(x-1)} \text { factor } \\
& =\frac{2 x(x-1)}{(x+3)(x+2)(x-1)}-\frac{(x+1)(x+2)}{(x+3)(x-1)(x+2)} \text { get common denominator } \\
& =\frac{2 x(x-1)-(x+1)(x+2)}{(x+3)(x+2)(x-1)} \text { subtract } \\
& =\frac{2 x^{2}-2 x-x^{2}-3 x-2}{(x+3)(x+2)(x-1)} \text { simplify numerator: distribute } \\
& =\frac{x^{2}-5 x-2}{(x+3)(x+2)(x-1)} \text { simplify numerator: collect like terms }
\end{aligned}
$$

The numerator is prime. If we could factor it, we would.

