You should be able to answer questions dealing with these concepts. Study the practice problems, guided examples, WeBWorK, and examples worked in the textbook, as well as the practice test.

- Average Rate of Change
- Linear Functions f(x) = mx + b
- Quadratic Functions $f(x) = ax^2 + bx + c$
 - completing the square
 - vertex form $f(x) = a(x h)^2 + k$
 - vertex and axis of symmetry
 - x-intercepts
 - average rate of change
- Power Functions $f(x) = kx^a, a \in \mathbb{R}, a \neq 0$
 - square root function
 - direct variation
 - inverse variation
- Monomial Functions $f(x) = kx^n, n = 0, 1, 2, 3, \dots$
 - end behaviour for n even, n odd
 - sketching monomials
 - reciprocal function
- Polynomials
 - terminology: term, coefficients, leading term
 - local extrema
 - end behaviour: $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$
 - zeros of polynomials, multiplicity, crossing x-axis
- Factoring
 - difference of squares: $a^2 b^2 = (a b)(a + b)$
 - perfect square: $a^2 \pm 2ab + b^2 = (a \pm b)^2$
 - difference of cubes: $a^3 b^3 = (a b)(a^2 + ab + b^2)$
 - sum of cubes: $a^3 + b^3 = (a + b)(a^2 ab + b^2)$
 - factoring by using quadratic formula
 - factoring by using long division algorithm
- Complex Zeros
 - arithmetic of complex numbers
 - complex conjugate of a + bi is a bi
 - a non-real zero of f is not an x-intercept of f
 - a polynomial of odd degree will have at least one real zero
- Zeros of Polynomials
 - long division algorithm for polynomials
 - remainder theorem
 - factor theorem
 - rational zero theorem
- Sketching Polynomials
 - examine end behaviour (horizontal asymptotes, slant asymptotes), find any x-intercepts (factor the polynomial if possible), find the y-intercept, which is f(0) (it might be a point of interest).
- Sketching Rational Functions of the form $f(x) = \frac{ax + b}{cx + d}$
 - find how f is transformed from the reciprocal function y = 1/x

- Sketching a General Rational Function
 - examine end behaviour (horizontal asymptotes, slant asymptotes), look for vertical asymptotes (factor the denominator if possible), find any x-intercepts (factor the numerator if possible), find the y-intercept, which is f(0) (it might be a point of interest).
- Solving Equalities
 - solving polynomial equations f(x) = 0
 - solving rational equations f(x)/g(x) = 0
 - * lowest common denominator
 - * extraneous solutions
 - * indeterminant forms $(\frac{0}{0}$ is an indeterminant form, you need to do some work to determine what it is)
- Solving Inequalities
 - sign chart
 - polynomial inequalities
 - rational inequalities
 - radical inequalities, absolute value inequalities