Note: You can expect other types of questions on the test than the ones presented here!

Questions

Example 1 Eliminate the parameter and sketch the parametric curve given by $x=t-2, y=3 / t,|t|<1$.
Example 2 Solve the system of equations $x^{2}+y^{2}=9$ and $x^{2}-y=2$. Sketch the situation to check that you found the correct number of solutions.

Example 3 Sketch the region defined by $x^{2}-2 x+y^{2} \geq 8$ and $y>|x+1|$.
Example 4 A parabola is the set of all points in a plane equidistant from a particular line (the directrix) and a particular point (the focus) in the plane. If the focus is $(0, p)$ and the directrix is $y=-p$, derive the equation of the parabola $x^{2}=4 y p$. Include a well labeled sketch of the situation to motivate your calculations.
Example 5 Sketch $4 x^{2}+y^{2}-32 x+16 y+124=0$. Locate the center, vertices, and foci of the ellipse.
Example 6 Sketch $9 x^{2}-54 x-4 y^{2}+8 y+113=0$. Locate the vertices and foci of the hyperbola.

Solutions

$$
\text { 1) } x=t-2 \rightarrow t=x+2
$$

substitute into $y=\frac{3}{t}: y=\frac{3}{x+2}$
Domain: $|t|<1 \rightarrow-1<t<1$ At $t=-1, x=-1-2=-3$

$$
\text { At } t=1, x=+1-2=-1
$$

so parametric equation becomes

$$
y=\frac{3}{x+2} \quad-3<x<-1
$$

inside function
\rightarrow horizontal shift

$$
\begin{aligned}
& 1+\begin{aligned}
& \text { inside function } \\
& \rightarrow y=f(x+2)=\frac{1}{x+2} \begin{array}{l}
\text { horizontal shift } \\
\text { of } 2 \text { units to left. }
\end{array}
\end{aligned} .
\end{aligned}
$$

$x=-2$

$i=y=3 f(x+2)=\frac{3}{x+2}$ $\begin{aligned} & \text { outside function } \\ & \text { by factor of } 3 .\end{aligned}$

21

$$
x^{2}+y^{2}=9
$$

$x^{2}-y=2 \longrightarrow y=x^{2}-2$ substitute into $1^{\text {st }}$ equation.

$$
\begin{aligned}
& x^{2}+\left(x^{2}-2\right)^{2}=9 \\
& x^{2}+x^{4}-4 x^{2}+4=9
\end{aligned}
$$

$x^{4}-3 x^{2}-5=0$ difficult to factor. Backup and try something else.

$$
\begin{aligned}
& \begin{array}{l}
x^{2}+y^{2}=9 \\
x^{2}-y=2 \\
y^{2}+y=7
\end{array} \text { subtract } \\
& \left.\longrightarrow \quad \begin{array}{l}
y^{2}+y-7=0 \\
y
\end{array}\right) \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \\
& =\frac{-1 \pm \sqrt{1-4(1)(-7)}}{2} \\
& \\
& =\frac{-1 \pm \sqrt{29}}{2}
\end{aligned}
$$

If $y=\frac{-1+\sqrt{29}}{2}: \quad x= \pm \sqrt{2+y}$
Solutions

$$
\begin{aligned}
& = \pm \sqrt{2+\frac{-1+\sqrt{29}}{2}} \\
& = \pm \sqrt{\frac{3+\sqrt{29}}{2}}
\end{aligned}
$$

$$
\left(\sqrt{\frac{3+\sqrt{29}}{2}}, \frac{-1+\sqrt{29}}{2}\right)
$$

$$
\left(-\sqrt{\frac{3+\sqrt{29}}{2}}, \frac{-1+\sqrt{29}}{2}\right)
$$

If $y=\frac{-1-\sqrt{29}}{2}: x= \pm \sqrt{2+y}$

$$
= \pm \sqrt{\frac{3-\sqrt{29}}{2}}
$$

since $\frac{3-\sqrt{29}}{2}<0$, no real solutions.

sketch shows there should only be 2 solutions.
3) Complete square:

$$
\begin{aligned}
& x^{2}-2 x+y^{2}=8 \\
& \underbrace{x^{2}-2 x+1}-1+y^{2}=8
\end{aligned}
$$

$$
(x-1)^{2}+y^{2}=9 \text { circle radius } 3 \text { center }(1,0)
$$

Test point: $(1,0): \quad 1^{2}-2(1)+0^{2} \geq 8$

$$
-1 \geq 8 \text { False. }
$$

region we want is outside the circle.
$y>|x+1|:$ sketch $y=|x+1|$
which is $y=|x|$ shifted left 1 unit
Test point (0,0): $0>|1|$ False. region we want is above $y=|x+1|$.

distance to directrix $=$ distance to focus

$$
\begin{gathered}
\sqrt{(x-x)^{2}+(y-(-p))^{2}}=\sqrt{(x-0)^{2}+(y-p)^{2}} \\
(y+p)^{2}=x^{2}+(y-p)^{2} \\
y^{2}+2 y p+p^{2}=x^{2}+y^{2}-2 y p+p^{2} \\
2 y p=x^{2}-2 y p \\
x^{2}=4 y p
\end{gathered}
$$

51 $4 x^{2}+y^{2}-32 x+16 y+124=0$
complete square in x and y

$$
\begin{aligned}
& 4[\underbrace{x^{2}-8 x+16}-16]+[\underbrace{y^{2}+16 y+64}-64]=-124 \\
& 4\left[(x-4)^{2}-16\right]+\left[(y+8)^{2}-64\right]=-124 \\
& 4(x-4)^{2}-64+(y+8)^{2}-644=-124 \\
& 4(x-4)^{2}+(y+8)^{2}=4
\end{aligned}
$$

$$
(x-4)^{2}+\frac{(y+8)^{2}}{}=1 \text { ellipse! Get Box: if } x=4 \text {, then }
$$

$$
\begin{aligned}
& \frac{(y+8)^{2}}{z^{2}}=1 \\
& y+8= \pm 2 \\
& y=-6,-10
\end{aligned}
$$

$$
\text { points }(4,-6) \text { and }(4,-10)
$$

$$
\text { if } y=-8 \text {, then }
$$

$$
\begin{gathered}
(x-4)^{2}=1 \\
x-4= \pm 1 \\
x=5,3
\end{gathered}
$$

points $(5,-8)$ and $(3,-8)$
Center ($4,-8$)
Vertices $(4,-6)$ and $(4,-10)$
Pythagorean relation: $c=\sqrt{2^{2}-1^{2}}=\sqrt{3}$
foci: $(4,-8+\sqrt{3})$ and $(4,-8-\sqrt{3})$
6) $9 x^{2}-54 x$ 雍 $4 y^{2}+8 y+113=0$
complete square in both x and y :

$$
\begin{aligned}
& 9[\underbrace{x^{2}-6 x+9}-9]-4[\underbrace{y^{2}-2 y+1}-1]=-113 \\
& 9\left[(x-3)^{2}-9\right]-4\left[(y-1)^{2}-1\right]=-113 \\
& 9(x-3)^{2}-81-4(y-1)^{2}+4=-113 \\
& 9(x-3)^{2}-4(y-1)^{2}=-36
\end{aligned}
$$

this should be positive

Multiply by -1.
$4(y-1)^{2}-9(x-3)^{2}=36$
I negative here makes it a hyperbola. Get box!
$\left\{\begin{array}{l}\frac{(y-1)^{2}}{3^{2}}-\frac{(x-3)^{2}}{2^{2}}=1 / 1\end{array} \quad \begin{array}{l}\text { Center: }(3,1) \\ x \text { width is } 2 \cdot 2=4 \\ \\ y, 4) \text { width is } 2 \cdot 3=6\end{array}\right.$
If $x=3$, then

$$
\begin{gathered}
\frac{(y-1)^{2}}{3^{2}}=1 \\
y-1= \pm 3 \\
y=4,-2
\end{gathered}
$$

vertices $(3,4),(3,-2)$
Get $c=\sqrt{3^{2}+2^{2}}=\sqrt{13}$
foci: $(3,1+\sqrt{13})$
$(3,1-\sqrt{13})$

