Precalculus I Functions Test 4: Concepts to Review

- Parametric equations
 - for line segment between (x_1, y_1) and (x_2, y_2) : $x = (1 t)x_1 + tx_2$ $y = (1 t)y_1 + ty_2$, $0 \le t \le 1$
 - eliminating parameter and sketching resulting implicit function
- Solving systems of equations
 - method of substitution
 - method of elimination
- Determining the region satisfying a system of inequalities by sketching
- Conic sections
 - completing the square
 - sketching
 - derivations
 - parabolas

*
$$(x - h)^2 = 4p(y - k)$$
 (opens up)

*
$$(x-h)^2 = -4p(y-k)$$
 (opens down)

*
$$(x-h)^2 = -4p(y-k)$$
 (opens down)
* $(y-k)^2 = 4p(x-h)$ (opens to right)

*
$$(y-k)^2 = -4p(x-h)$$
 (opens to left)

- * directrix, vertex, focus, focal length, focal width
- circles and ellipses

* circles
$$(x-h)^2 + (y-k)^2 = r^2$$

* ellipses
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

- * circles $(x-h)^2 + (y-k)^2 = r^2$ * ellipses $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ * center, vertices, foci, focal axis, Pythagorean relation $c^2 = a^2 b^2$ or $c^2 = b^2 a^2$.
- hyperbolas

$$* \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ (opens right/left)}$$

$$* \frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1 \text{ (opens up/down)}$$

$$* \text{ center, vertices, foci, focal axis, Pythagorean relation } c^2 = a^2 + b^2$$

*
$$\frac{(y-k)^2}{h^2} - \frac{(x-h)^2}{a^2} = 1$$
 (opens up/down)