The formulas I have memorized:

$$
\begin{array}{|l|}
\hline \cos ^{2} x+\sin ^{2} x=1 \\
\hline \hline \cos (u-v)=\cos u \cos v+\sin u \sin v \\
\hline \sin (u+v)=\sin u \cos v+\cos u \sin v \\
\hline
\end{array}
$$

Any other formula I need I will derive from these.
Showing the steps of your solution will be critical on this test.

Questions

1. Show why $\tan \left(-\frac{\pi}{12}\right)=-2+\sqrt{3}$ using angle difference formulas.
2. Solve $\sin 2 x+\sin 4 x=0$ exactly for all solutions in the interval $[0,2 \pi)$.
3. (challenging) Prove the identity $\sec 2 u=\frac{\sec ^{2} u}{2-\sec ^{2} u}$.
4. Prove the trig identity $\cos (u-v)=\cos u \cos v+\sin u \sin v$ using the following process:

Draw a diagram of the unit circle which includes the angles u, v, and $\theta=u-v$.
Draw a second diagram with the angle θ in standard position.
Use the distance formula and simplify to get the given identity.

Solutions

1. Show why $\tan \left(-\frac{\pi}{12}\right)=-2+\sqrt{3}$ using angle difference formulas.

We can write the tangent in terms of sine and cosine functions:

$$
\tan \left(-\frac{\pi}{12}\right)=\frac{\sin \left(-\frac{\pi}{12}\right)}{\cos \left(-\frac{\pi}{12}\right)}
$$

Now, we need to figure out how to relate $-\pi / 12$ to some of our special angles, since we are told to find this answer exactly.

$$
\frac{-\pi}{12}=\frac{-2 \pi}{24}=\frac{4 \pi-6 \pi}{24}=\frac{\pi}{6}-\frac{\pi}{4} .
$$

Here are the reference triangles we will need:

We need cosine and sine of a difference identities, which are

$$
\begin{aligned}
\cos (u-v) & =\cos u \cos v+\sin u \sin v \text { (memorized) } \\
\sin (u+v) & =\sin u \cos v+\cos u \sin v \text { (memorized) } \\
\sin (u-v) & =\sin (u+(-v)) \text { (work this out, using above identity) } \\
& =\sin u \cos (-v)+\cos u \sin (-v) \\
\sin (u-v) & =\sin u \cos v-\cos u \sin v \text { (since cosine is even and sine is odd) }
\end{aligned}
$$

We have what we need to solve the problem.
Therefore,

$$
\begin{aligned}
\sin \left(-\frac{\pi}{12}\right) & =\sin \left(\frac{\pi}{6}-\frac{\pi}{4}\right) \\
& =\sin \left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{4}\right)-\cos \left(\frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}\right), \quad \text { use } \sin (u-v)=\sin u \cos v-\cos u \sin v \\
& =\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)-\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right), \quad \text { using reference triangles above } \\
& =\frac{1}{2 \sqrt{2}}-\frac{\sqrt{3}}{2 \sqrt{2}}=\frac{1-\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\cos \left(-\frac{\pi}{12}\right) & =\cos \left(\frac{\pi}{6}-\frac{\pi}{4}\right) \\
& =\cos \left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}\right), \quad \text { use } \cos (u-v)=\cos u \cos v+\sin u \sin v \\
& =\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right), \quad \text { using reference triangles above } \\
& =\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}
\end{aligned}
$$

So we have

$$
\tan \left(-\frac{\pi}{12}\right)=\frac{\sin \left(-\frac{\pi}{12}\right)}{\cos \left(-\frac{\pi}{12}\right)}=\left(\frac{1-\sqrt{3}}{2 \sqrt{2}}\right) \times\left(\frac{2 \sqrt{2}}{\sqrt{3}+1}\right)=\frac{1-\sqrt{3}}{1+\sqrt{3}} .
$$

To get the final result asked for, we can rationalize the denominator:

$$
\tan \left(-\frac{\pi}{12}\right)=\frac{1-\sqrt{3}}{1+\sqrt{3}}=\frac{1-\sqrt{3}}{1+\sqrt{3}} \times\left(\frac{1-\sqrt{3}}{1-\sqrt{3}}\right)=\frac{1-2 \sqrt{3}+3}{1-3}=\frac{4-2 \sqrt{3}}{-2}=-2+\sqrt{3} .
$$

2. Solve $\sin 2 x+\sin 4 x=0$ exactly for all solutions in the interval $[0,2 \pi)$.

The main issue is the angles are different. Let's use:

$$
\sin 4 x=\sin (2 x+2 x)=\sin 2 x \cos 2 x+\sin 2 x \cos 2 x=2 \sin 2 x \cos 2 x
$$

to get all the angles being the same and then see what happens.

$$
\begin{aligned}
\sin 2 x+\sin 4 x= & \sin 2 x+2 \sin 2 x \cos 2 x, \\
= & \sin 2 x(1+2 \cos 2 x)=0 \\
& \sin 2 x=0 \quad \text { or } \quad 1+2 \cos 2 x=0 \\
& \sin y=0 \quad \text { or } \quad 1+2 \cos y=0
\end{aligned}
$$

Where we have let $y=2 x$. Since we want $x \in[0,2 \pi)$, we should search for all solutions $y \in[0,4 \pi)$.
First, $\sin y=0$ if $y=0, \pi, 2 \pi, 3 \pi$. These are all the solutions for $y \in[0,4 \pi)$.

$$
\begin{array}{rll}
y=2 x=0 & \longrightarrow & x=0 \\
y=2 x=\pi & \longrightarrow & x=\frac{\pi}{2} \\
y=2 x=2 \pi & \longrightarrow & x=\pi \\
y=2 x=3 \pi & \longrightarrow & x=\frac{3 \pi}{2}
\end{array}
$$

Now, $1+2 \cos y=0$, which means $\cos y=-\frac{1}{2}$.
Since the cosine is negative, we must be in either Quadrant II or III.
Let's figure out what the solution to $\cos w=\operatorname{adj} / \mathrm{hyp}=\frac{1}{2}$ is. This comes from one of our special triangles:

So $w=\pi / 3$. We want the corresponding solutions in Quadrants II and III.

$y=\pi-w=\frac{2 \pi}{3}$
$y=\pi+w=\frac{4 \pi}{3}$
Now we need all the solutions $y \in[0,4 \pi)$:

$$
\begin{aligned}
& y=\frac{2 \pi}{3} \\
& y=\frac{4 \pi}{3} \\
& y=\frac{2 \pi}{3}+2 \pi=\frac{8 \pi}{3} \\
& y=\frac{4 \pi}{3}+2 \pi=\frac{10 \pi}{3}
\end{aligned}
$$

Now we need the solutions we seek, x :

$$
\begin{array}{rlll}
y=2 x=\frac{2 \pi}{3} & \longrightarrow & x=\frac{\pi}{3} \\
y=2 x=\frac{4 \pi}{3} & \longrightarrow & x=\frac{2 \pi}{3} \\
y=2 x=\frac{8 \pi}{3} & \longrightarrow & x=\frac{4 \pi}{3} \\
y=2 x=\frac{10 \pi}{3} & \longrightarrow & x=\frac{5 \pi}{3}
\end{array}
$$

There are eight values of x in $[0,2 \pi)$ which solve the equation.
3. Prove the identity $\sec 2 u=\frac{\sec ^{2} u}{2-\sec ^{2} u}$.

$$
\sec 2 u=\frac{1}{\cos 2 u}
$$

Pause to figure out the trig identity we need.

$$
\begin{aligned}
\cos (u-v) & =\cos u \cos v+\sin u \sin v \\
\cos (u+v)=\cos (u-(-v)) & =\cos u \cos (-v)+\sin u \sin (-v) \\
& =\cos u \cos v-\sin u \sin v \\
\cos (2 u) & =\cos ^{2} u-\sin ^{2} u
\end{aligned}
$$

Back to our problem:

$$
\begin{aligned}
\sec 2 u & =\frac{1}{\cos 2 u} \\
& =\frac{1}{\cos ^{2} u-\sin ^{2} u} \\
& =\frac{1}{\cos ^{2} u-\sin ^{2} u} \cdot\left(\frac{\sec ^{2} u}{\sec ^{2} u}\right) \\
& =\frac{\sec ^{2} u}{\left(\cos ^{2} u-\sin ^{2} u\right) \sec ^{2} u} \\
& =\frac{\sec ^{2} u}{\left(\cos ^{2} u-\sin ^{2} u\right) \frac{1}{\cos ^{2} u}} \\
& =\frac{\sec ^{2} u}{1-\tan ^{2} u}
\end{aligned}
$$

Pause to figure out the trig identity we need.

$$
\begin{aligned}
\cos ^{2} x+\sin ^{2} x & =1 \\
\frac{\cos ^{2} x}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x} & =\frac{1}{\cos ^{2} x} \\
1+\tan ^{2} x & =\sec ^{2} x \\
\tan ^{2} x & =\sec ^{2} x-1
\end{aligned}
$$

Back to our problem:

$$
\begin{aligned}
\sec 2 u & =\frac{\sec ^{2} u}{1-\tan ^{2} u} \\
& =\frac{\sec ^{2} u}{1-\left(\sec ^{2} u-1\right)} \\
\sec 2 u & =\frac{\sec ^{2} u}{2-\sec ^{2} u}
\end{aligned}
$$

4. Solution is in notes for Sum and Difference Identities.
