This is not a complete list of the types of problems to expect on the final exam.

Example Determine the domain of the function $f(x)=\sqrt{x-12}$.
Since we cannot take the square root of a negative number and get a real number, the domain of f is all x such that $x-12 \geq 0$, or $x \in[12, \infty)$.

Example Determine the domain of the function $f(x)=\frac{\sqrt{x}}{\ln x}$.
Since we cannot take the square root of a negative number and get a real number, we must have $x \in[0, \infty)$.
We also cannot have division by zero, so we must exclude $x=1$, since $\ln 1=0$.
The domain of f is $x \in[0,1) \cup(1, \infty)$.
Example Determine whether the function $g(x)=x^{6}+x^{2}+\sin x$ is even, odd, or neither. Use the algebraic technique to determine if a function is even or odd, rather than attempting to sketch the function.

$$
\begin{aligned}
g(-x) & =(-x)^{6}+(-x)^{2}+\sin (-x) \\
& =(-1)^{6} x^{6}+(-1)^{2} x^{2}+-\sin x \\
& =x^{6}+x^{2}-\sin x
\end{aligned}
$$

Since $g(-x) \neq g(x)$, and $g(-x) \neq-g(x)$, the function g is neither odd nor even.
Example Find a formula $f^{-1}(x)$ for the inverse of the function $f(x)=4 e^{3 x-9}$ (you do not have to discuss domain and range).

$$
\begin{aligned}
y & =4 e^{3 x-9} \quad \text { Step 1: let } y=f(x) \\
x & =4 e^{3 y-9} \quad \text { Step 2: Flip } x \text { and } y \\
\frac{x}{4} & =e^{3 y-9} \\
\ln \left(\frac{x}{4}\right) & =\ln e^{3 y-9} \\
\ln \left(\frac{x}{4}\right) & =3 y-9 \\
\ln \left(\frac{x}{4}\right)+9 & =3 y \\
\frac{\ln \left(\frac{x}{4}\right)+9}{3} & =y \\
f^{-1}(x) & =\frac{\ln \left(\frac{x}{4}\right)+9}{3} \text { Finally, } f^{-1}(x)=y
\end{aligned}
$$

Example Write an equation for the linear function f that satisfies the conditions $f(-3)=-7$ and $f(5)=-11$.
The slope-intercept form for a straight line is $y=m x+b$, where m is the slope and b is the y-intercept.

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{-7-(-11)}{-3-5}=-\frac{1}{2}
$$

Therefore,

$$
\begin{aligned}
y & =-\frac{1}{2} x+b \\
-7 & =-\frac{1}{2}(-3)+b \text { (substitute one of the points to determine } b \text {) } \\
b & =-7-\frac{3}{2}=-\frac{14}{2}-\frac{3}{2}=-\frac{17}{2}
\end{aligned}
$$

The equation of the straight line through the two specified points is $y=-\frac{1}{2} x-\frac{17}{2}$.
Example Given the functions $f(x)=x^{2}-4$ and $g(x)=\sqrt{x}+4$, determine the following compositions (simplify as much as possible). You do not have to discuss domains.
(a) $(f \circ f)(x)$

$$
\begin{aligned}
(f \circ f)(x) & =f(f(x)) \\
& =f\left(x^{2}-4\right) \\
& =\left(x^{2}-4\right)^{2}-4 \\
& =x^{4}-8 x^{2}+16-4 \\
& =x^{4}-8 x^{2}+12
\end{aligned}
$$

(b) $(g \circ f)(x)$

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g\left(x^{2}-4\right) \\
& =\sqrt{\left(x^{2}-4\right)}+4 \\
& =\sqrt{x^{2}-4}+4
\end{aligned}
$$

Example For the quadratic function $f(x)=x^{2}-4 x+5$, convert to the vertex form $f(x)=a(x-h)^{2}+k$ by completing the square.

$$
\begin{aligned}
f(x) & =x^{2}-4 x+5 \\
& =x^{2}-4 x+(4-4)+5 \\
& =\left(x^{2}-4 x+4\right)+(-4+5) \\
& =(x-2)^{2}+1
\end{aligned}
$$

Example Given the function $g(x)=-(12 x-7)^{2}(34 x+89)^{3}$. State the degree of the polynomial, and the zeros with their multiplicity. Describe the end behaviour of this function, and determine $\lim _{x \rightarrow-\infty} g(x)$.

This is a polynomial of degree 5 , with zeros $x=7 / 12$ of multiplicity 2 and $x=-89 / 34$ of multiplicity 3 .

For end behaviour, we look at the leading terms in each factor, since the leading terms will dominate for large $|x|$:

$$
g(x)=-(12 x-7)^{2}(34 x+89)^{3} \sim-(12 x)^{2}(34 x)^{3}=-144 \cdot 39304 x^{5}=-5659776 x^{5}
$$

Therefore, we have end behaviour like the following for large $|x|$:

From the sketch, we see that $\lim _{x \rightarrow-\infty} g(x)=\infty$.
Example Solve the inequality $\frac{2(x-1)}{(x+1)(x-3)} \leq 0$ using a sign chart.
The numerator is zero if $x=1$, the denominator is zero if $x=-1,3$. These are the possible values where the function will change sign.

$\frac{(-)}{(-)(-)}$		$\frac{(-)}{(+)(-)}$	$\frac{(+)}{(+)(-)}$	$\frac{(+)}{(+)(+)}$	
negative	-1	positive	1	negative	3

From the sign diagram, we see that $\frac{1}{x+1}+\frac{1}{x-3} \leq 0$ if $x \in(-\infty,-1) \cup[1,3)$. We do not include $x=-1$ since the function is not defined there.

Example Given the function $f(x)=a x^{2}+b x+c$, simplify the following expression as much as possible:

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

$$
\begin{aligned}
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} & =\frac{\left(a\left(x_{0}+h\right)^{2}+b\left(x_{0}+h\right)+c\right)-\left(a x_{0}^{2}+b x_{0}+c\right)}{h} \\
& =\frac{a x_{0}^{2}+a h^{2}+2 a h x_{0}+b x_{0}+b h+c-a x_{0}^{2}-b x_{0}-c}{h} \\
& =\frac{a h^{2}+2 a h x_{0}+b h}{h} \\
& =\frac{h\left(a h+2 a x_{0}+b\right)}{h} \\
& =a h+2 a x_{0}+b
\end{aligned}
$$

Example Assuming x, y, and z are positive, use properties of logarithms to write the expression as a single logarithm.

$$
\ln (x y)+2 \ln \left(y z^{2}\right)-\ln (x z)
$$

Solution:

$$
\begin{aligned}
\ln (x y)+2 \ln \left(y z^{2}\right)-\ln (x z) & =\ln (x y)+\ln \left(\left(y z^{2}\right)^{2}\right)-\ln (x z) \\
& =\ln (x y)+\ln \left(y^{2} z^{4}\right)-\ln (x z) \\
& =\ln \left((x y)\left(y^{2} z^{4}\right)\right)-\ln (x z) \\
& =\ln \left(x y^{3} z^{4}\right)-\ln (x z) \\
& =\ln \left(\frac{x y^{3} z^{4}}{x z}\right) \\
& =\ln \left(y^{3} z^{3}\right)
\end{aligned}
$$

Example Solve the equation $\frac{44}{1+4 e^{-x / 7}}=32$ algebraically.

Solution:

$$
\begin{aligned}
\frac{44}{1+4 e^{-x / 7}} & =32 \\
\frac{1+4 e^{-x / 7}}{44} & =\frac{1}{32} \\
1+4 e^{-x / 7} & =\frac{44}{32} \\
1+4 e^{-x / 7} & =\frac{11}{8} \\
4 e^{-x / 7} & =\frac{11}{8}-1 \\
4 e^{-x / 7} & =\frac{3}{8} \\
e^{-x / 7} & =\frac{3}{32}
\end{aligned}
$$

$$
\begin{aligned}
\ln e^{-x / 7} & =\ln \left(\frac{3}{32}\right) \\
-\frac{x}{7} & =\ln \left(\frac{3}{32}\right) \\
x & =-7 \ln \left(\frac{3}{32}\right)=-7 \ln \left(\left(\frac{32}{3}\right)^{-1}\right)=7 \ln \left(\frac{32}{3}\right)
\end{aligned}
$$

Example Solve the equation $\ln x-\frac{1}{2} \ln (x+4)=0$ algebraically. Be sure to eliminate any extraneous solutions.

$$
\begin{aligned}
\ln x-\frac{1}{2} \ln (x+4) & =0 \\
\ln x-\ln \left((x+4)^{1 / 2}\right) & =0 \\
\ln \left(\frac{x}{(x+4)^{1 / 2}}\right) & =0 \\
e^{\ln \left(\frac{x}{(x+4)^{1 / 2}}\right)} & =e^{0} \\
\frac{x}{(x+4)^{1 / 2}} & =1 \\
x & =(x+4)^{1 / 2} \\
x^{2} & =\left((x+4)^{1 / 2}\right)^{2} \\
x^{2} & =x+4 \\
x^{2}-x-4 & =0 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{1 \pm \sqrt{(-1)^{2}-4(1)(-4)}}{2} \\
& =\frac{1 \pm \sqrt{17}}{2}
\end{aligned}
$$

From the original equation, we must have $x+10>0$ and $x>0$, which are both satisfied if $x>0$. These conditions are necessary for the logarithms to be defined.

The solution $\frac{1-\sqrt{17}}{2}<0$, so it is an extraneous solution.
The only solution to the original equation is $\frac{1+\sqrt{17}}{2}>0$.
Example Given $f(x)=\frac{1}{2} \ln (x+2), g(x)=e^{x}$. Find $(g \circ f)(x)$, and simplify as much as possible. Your final answer should not have exponentials and logarithms in them.

$$
(g \circ f)(x)=g(f(x))
$$

$$
\begin{aligned}
& =g\left(\frac{1}{2} \ln (x+2)\right) \\
& =g(\ln (\sqrt{x+2})) \\
& =e^{\ln (\sqrt{x+2})} \\
& =\sqrt{x+2}
\end{aligned}
$$

Example Find $\csc \theta$ if $\tan \theta=\frac{77}{2}$ and $\sin \theta<0$.
Since $\sin \theta$ is less than zero, we must be in either Quadrant III or IV.
Since $\tan \theta$ is greater than zero we must be in either Quadrant I or III.
Therefore, the angle θ has a terminal side in Quadrant III.

Since $\tan \theta=\frac{y}{x}=\frac{77}{2}=\frac{-77}{-2}$, we have $y=-77, x=-2$.
The distance $r=\sqrt{x^{2}+y^{2}}=\sqrt{(-77)^{2}+(-2)^{2}}=\sqrt{5933}$.

Therefore, $\csc \theta=\frac{1}{\sin \theta}=\frac{r}{y}=\frac{\sqrt{5933}}{-77}=-\frac{\sqrt{5933}}{77}$.

Example Find an algebraic expression equivalent to the expression $\sin \left(\arccos \left(\frac{1}{x}\right)\right)$.

To simplify this let $\theta=\arccos \left(\frac{1}{x}\right)$. This means $\cos \theta=\frac{1}{x}=\frac{\operatorname{adj}}{\text { hyp }}$.
Construct a reference triangle

The length of the opposite side was found using the Pythagorean theorem

$$
\sin \left(\arccos \left(\frac{1}{x}\right)\right)=\sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{\sqrt{x^{2}-1}}{x}
$$

Example Solve $\cos 2 x+\cos x=0$ algebraically for exact solutions in the interval $[0,2 \pi)$.

$$
\begin{aligned}
\cos 2 x+\cos x & =\cos ^{2} x-\sin ^{2} x+\cos x \\
& =\cos ^{2} x-\left(1-\cos ^{2} x\right)+\cos x \\
& =2 \cos ^{2} x+\cos x-1=0
\end{aligned}
$$

Let $y=\cos x$. Then

$$
\begin{aligned}
\cos 2 x+\cos x & =2 \cos ^{2} x+\cos x-1=0 \\
& =2 y^{2}+y-1=0 \\
y & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{1+8}}{4}=\frac{-1 \pm 3}{4}=\frac{2}{4} \text { or } \frac{-4}{4}=\frac{1}{2} \text { or }-1
\end{aligned}
$$

So we must solve $y=\cos x=1 / 2$ and $y=\cos x=-1$.
The equation $\cos x=-1$ has a solution of π in the interval $[0,2 \pi)$.
The equation $\cos x=\operatorname{adj} /$ hyp $=1 / 2$ corresponds to one of our special triangles:

So the solution is $\pi / 3$.
There is also a solution in Quadrant IV at $2 \pi-\pi / 3=5 \pi / 3$ in the interval $[0,2 \pi)$.
The solutions to $\cos 2 x+\cos x=0$ in the interval $[0,2 \pi)$ are $\frac{\pi}{3}, \pi, \frac{5 \pi}{3}$.
Example Find the value of $\sin \left(\frac{\pi}{12}\right)$ exactly using an angle difference formula.

Solution:

First, we need to figure out how to relate $\pi / 12$ to some of our special angles, since we are told to find this answer exactly.

$$
\frac{\pi}{12}=\frac{2 \pi}{24}=\frac{6 \pi-4 \pi}{24}=\frac{\pi}{4}-\frac{\pi}{6}
$$

Therefore,

$$
\begin{aligned}
\sin \left(\frac{\pi}{12}\right) & =\sin \left(\frac{\pi}{4}-\frac{\pi}{6}\right) \\
& =\sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{6}\right)-\cos \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{6}\right), \quad \text { use } \sin (u-v)=\sin u \cos v-\cos u \sin v \\
& =\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right), \quad \text { using reference triangles below } \\
& =\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}=\frac{\sqrt{3}-1}{2 \sqrt{2}}
\end{aligned}
$$

Example Use the power reducing identities to prove the identity
$\sin ^{4} x=\frac{1}{8}(3-4 \cos 2 x+\cos 4 x)$.

Solution:

$$
\begin{aligned}
\sin ^{4} x & =\left(\sin ^{2} x\right)^{2} \\
& =\left(\frac{1-\cos 2 x}{2}\right)^{2}, \quad \text { using } \sin ^{2} u=\frac{1-\cos 2 u}{2}, \text { with } u=x \\
& =\frac{1}{4}(1-\cos 2 x)^{2} \\
& =\frac{1}{4}\left(1+\cos ^{2} 2 x-2 \cos 2 x\right) \\
& =\frac{1}{4}\left(1+\left(\frac{1+\cos 4 x}{2}\right)-2 \cos 2 x\right), \quad \text { using } \cos ^{2} u=\frac{1+\cos 2 u}{2}, \text { with } u=2 x . \\
& =\frac{1}{4}\left(\frac{2}{2}+\frac{1+\cos 4 x}{2}-\frac{4 \cos 2 x}{2}\right) \\
& =\frac{1}{8}(2+1+\cos 4 x-4 \cos 2 x) \\
& =\frac{1}{8}(3+\cos 4 x-4 \cos 2 x) \\
& =\frac{1}{8}(3-4 \cos 2 x+\cos 4 x)
\end{aligned}
$$

Example Convert the rectangular equation $(x+3)^{2}+(y+3)^{2}=18$ to a polar equation.
We simply use our relations:
$x=r \cos \theta$
$y=r \sin \theta$,

$$
\begin{aligned}
(x+3)^{2}+(y+3)^{2} & =18 \\
(r \cos \theta+3)^{2}+(r \sin \theta+3)^{2} & =18 \\
\left(r^{2} \cos ^{2} \theta+9+6 r \cos \theta\right)+\left(r^{2} \sin ^{2} \theta+9+6 r \sin \theta\right) & =18 \\
r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+18+6 r \cos \theta+6 r \sin \theta & =18 \\
r^{2}(1)+6 r \cos \theta+6 r \sin \theta & =18-18 \\
r^{2}+6 r \cos \theta+6 r \sin \theta & =0 \\
r(r+6 \cos \theta+6 \sin \theta) & =0 \\
r+6 \cos \theta+6 \sin \theta & =0 \\
r & =-6 \cos \theta-6 \sin \theta
\end{aligned}
$$

Example Solve the system of equations

$$
\begin{align*}
y^{2} & =-x+9 \tag{1}\\
y & =-x \tag{2}
\end{align*}
$$

Substitute Eq. (2) into Eq. (1):

$$
\begin{aligned}
y^{2} & =-x+9 \\
(-x)^{2} & =-x+9 \\
x^{2}+x-9 & =0 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-1 \pm \sqrt{1+36}}{2} \\
& =\frac{-1 \pm \sqrt{37}}{2}
\end{aligned}
$$

For $x=\frac{-1+\sqrt{37}}{2}$:

$$
y=-x=-\frac{-1+\sqrt{37}}{2}=\frac{1-\sqrt{37}}{2}
$$

For $x=\frac{-1-\sqrt{37}}{2}$:

$$
y=-x=-\frac{-1-\sqrt{37}}{2}=\frac{1+\sqrt{37}}{2}
$$

The two solutions are $(x, y)=\left(\frac{-1+\sqrt{37}}{2}, \frac{1-\sqrt{37}}{2}\right)$ and $(x, y)=\left(\frac{-1-\sqrt{37}}{2}, \frac{1+\sqrt{37}}{2}\right)$

Example Starting from $\cos (u-v)=\cos u \cos v+\sin u \sin v$, derive an expression for $\sin (u+v)$.

$$
\begin{aligned}
\cos (u-v) & =\cos u \cos v+\sin u \sin v \\
\sin (u+v) & =\cos \left(\frac{\pi}{2}-(u+v)\right) \\
& =\cos \left(\frac{\pi}{2}-u-v\right) \\
& =\cos \left(\left(\frac{\pi}{2}-u\right)-v\right) \\
& =\cos \left(\frac{\pi}{2}-u\right) \cos v+\sin \left(\frac{\pi}{2}-u\right) \sin v \\
& =\sin u \cos v+\cos u \sin v
\end{aligned}
$$

Example Starting from $\cos (u+v)=\cos u \cos v-\sin u \sin v$, prove the identity $\cos ^{2} u=\frac{1+\cos 2 u}{2}$.

$$
\begin{aligned}
\cos (u+v) & =\cos u \cos v-\sin u \sin v \\
\cos (2 u)=\cos (u+u) & =\cos u \cos u-\sin u \sin u \\
& =\cos ^{2} u-\sin ^{2} u \\
& =\cos ^{2} u-\left(1-\cos ^{2} u\right) \\
\cos 2 u & =2 \cos ^{2} u-1 \\
\cos ^{2} u & =\frac{1+\cos 2 u}{2}
\end{aligned}
$$

Example Solve the system of equations

$$
\begin{align*}
& y^{2}=x \tag{3}\\
& x^{2}=-8 y \tag{4}
\end{align*}
$$

Substitute Eq. (3) into Eq. (4):

$$
\begin{aligned}
x^{2} & =-8 y \\
\left(y^{2}\right)^{2} & =-8 y \\
y^{4}= & -8 y \\
y^{4}+8 y= & 0 \\
y\left(y^{3}+8\right)= & 0 \\
y=0 \quad \text { or } & y^{3}+8=0 \\
& y^{3}=-8 \\
& y=(-8)^{1 / 3}=-2
\end{aligned}
$$

For $y=0$:
$x=y^{2}=0$

For $y=-2$:

$$
x=y^{2}=(-2)^{2}=4
$$

The two solutions are $(x, y)=(0,0)$ and $(x, y)=(-2,4)$
Example Sketch the ellipse $(x+3)^{2}+16(y-2)^{2}=4$.
First, get this in standard form:

$$
\begin{aligned}
(x+3)^{2}+16(y-2)^{2} & =4 \\
\frac{(x+3)^{2}}{4}+4(y-2)^{2} & =1 \\
\frac{(x+3)^{2}}{2^{2}}+\frac{(y-2)^{2}}{(1 / 2)^{2}} & =1
\end{aligned}
$$

The center of the ellipse is at $(-3,2)$ and the "spread" in x is $a=2$ and the "spread" in y is $b=1 / 2$. This is enough to get the box the ellipse is inside, or you can do more work.

When $x=-3$, we have

$$
\begin{aligned}
\frac{(0)^{2}}{2^{2}}+\frac{(y-2)^{2}}{(1 / 2)^{2}} & =1 \\
y-2 & = \pm \frac{1}{2} \\
y & =2 \pm \frac{1}{2}=1.5 \text { or } 2.5
\end{aligned}
$$

When $y=2$, we have

$$
\begin{aligned}
\frac{(x+3)^{2}}{2^{2}}+\frac{(0)^{2}}{(1 / 2)^{2}} & =1 \\
x+3 & = \pm 2 \\
x & =-3 \pm 2=-1 \text { or }-5
\end{aligned}
$$

Here is a sketch. The four points we found above are included as the black dots, and helped us get the sketch.

For your Information (I won't ask you about foci on final exam):
The focal axis is $y=2$. The center is $(03,2)$
To get the foci we need $c= \pm \sqrt{4-\frac{1}{4}}= \pm \frac{\sqrt{3}}{2}$.
The foci are $\left(-3+\frac{\sqrt{3}}{2}, 2\right)$ and $\left(-3-\frac{\sqrt{3}}{2}, 2\right)$. Here is a sketch that includes the foci as red dots:

