Note: You can expect other types of questions on the test than the ones presented here!

Questions

Example 1. Find the vertex of the quadratic $f(x)=14 x^{2}-x$.
Example 2. Given $f(x)=x^{3}+1$, simplify the quantity $\frac{f(x+h)-f(x)}{h}$ as much as possible. You should simplify until substituting zero for h will not yield the indeterminant form $\frac{0}{0}$.
Example 3. Find the remainder $r(x)$ when $g(x)=-4 x^{3}-2 x+3$ is divided by $d(x)=2 x-8$ using long division of polynomials.
Example 4. Sketch the polynomial $f(x)=(2 x-1)^{3}(2-x)^{2}$ by hand. Show all your work.
Example 5. For the function $g(x)$ given below, determine what monomial the function approaches for large x. Then, evaluate $\lim _{x \rightarrow \infty} g(x)$ and $\lim _{x \rightarrow-\infty} g(x)$. Does the function $g(x)$ have any horizontal asymptotes?

$$
g(x)=\frac{\left(-x^{4}+24 x-78\right)(-2 x+1)}{3 x^{3}-99}
$$

Example 6. Sketch the rational function $h(x)=\frac{(x+6)^{3}}{2\left(x^{2}-4\right)}$ by hand (find x-intercepts, vertical asymptotes, slant or horizontal asymptotes, and end behaviour).
Example 7. Solve the inequality $\frac{|x-2|(-4 x-5)}{x-5} \leq 0$ by constructing a sign chart, or drawing an appropriate sketch by hand. Show your work.

Example 8. Solve the inequality $\frac{1}{x+2} \leq-\frac{1}{x^{2}}$ by constructing a sign chart, or drawing an appropriate sketch by hand. Show all your work.
Example 9. Solve $\frac{3 x}{x+1}+\frac{5}{x-2}=\frac{15}{x^{2}-x-2}$ for x.
Example 10. The volume of an enclosed gas (at a constant temperature) varies inversely as the pressure. This means the relationship between volume V and pressure P can be written as

$$
V=\frac{k}{P}
$$

(Boyle's Law)
where k is the proportionality constant.
If the pressure of a 3.46 L sample of neon gas at $302^{\circ} \mathrm{K}$ is 0.926 atm , what would the volume be at a pressure of 1.452 atm if the temperature does not change? Since this problem is from chemistry, you can have a solution that uses decimals rather than fractions.

Solutions

Example 1. Find the vertex of the quadratic $f(x)=14 x^{2}-x$.
Solution using completing the square:

$$
\begin{aligned}
f(x) & =14 x^{2}-x \\
& =14\left(x^{2}+\left(\frac{-1}{14}\right) x\right)+3 \\
& =14\left(x^{2}+\left(\frac{-1}{14}\right) x+\left(\frac{-1}{28}\right)^{2}-\left(\frac{-1}{28}\right)^{2}\right) \\
& =14\left(x^{2}+\left(\frac{-1}{14}\right) x+\left(\frac{-1}{28}\right)^{2}-\left(\frac{-1}{28}\right)^{2}\right) \\
& =14\left(\left[x+\left(\frac{-1}{28}\right)\right]^{2}-\left(\frac{-1}{28}\right)^{2}\right) \\
& =14\left(\left[x-\frac{1}{28}\right]^{2}-\left(\frac{-1}{28}\right)^{2}\right) \\
& =14\left[x-\frac{1}{28}\right]^{2}-14\left(\frac{-1}{28}\right)^{2} \\
& =14\left[x-\frac{1}{28}\right]^{2}-\frac{1}{56}
\end{aligned}
$$

The vertex is $(h, k)=\left(\frac{1}{28},-\frac{1}{56}\right)$.
Another way to solve this would be to recognize that the x coordinate of the vertex is always centered between the zeros (even if the zeros are not real numbers!).
Zeros:

$$
\begin{aligned}
14 x^{2}-x & =0 \\
x(14 x-1) & =0 \\
x & =0 \text { or } x=1 / 14
\end{aligned}
$$

So the x coordinate of the vertex is $\frac{1}{2}\left(0+\frac{1}{14}\right)=\frac{1}{28}$.
The y coordinate of the vertex is $f(1 / 28)=14(1 / 28)^{2}-(1 / 28)=-1 / 56$.
The vertex is $(h, k)=\left(\frac{1}{28},-\frac{1}{56}\right)$.

Example 2. Given $f(x)=x^{3}+1$, simplify the quantity $\frac{f(x+h)-f(x)}{h}$ as much as possible. You should simplify until substituting zero for h will not yield the indeterminant form $\frac{0}{0}$.

$$
\begin{aligned}
\text { Average Rate of Change } & =\frac{f(x+h)-f(x)}{h} \\
& =\frac{(x+h)^{3}+1-(x)^{3}-1}{h} \\
& =\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h} \\
& =\frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
& =\frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h} \\
& =3 x^{2}+3 x h+h^{2}
\end{aligned}
$$

Example 3. Find the remainder $r(x)$ when $g(x)=-4 x^{3}-2 x+3$ is divided by $d(x)=2 x-8$ using long division of polynomials.

\[

\]

Example 4. Sketch the polynomial $f(x)=(2 x-1)^{3}(2-x)^{2}$ by hand. Show all your work.
zeros

$$
\begin{aligned}
& x=\frac{1}{2} \text {, multiplicity } 3 \text { (odd). so } f \text { changes sign. } \\
& x=2 \text {, multiplicity } 2 \text { (even), so } f \text { does not change sign. }
\end{aligned}
$$

End behaviour: for large x,

$$
\begin{aligned}
f(x) & =(2 x-1)^{3}(2-x)^{2} \sim(2 x)^{3}(-x)^{2}=8 x^{5} \\
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} 8 x^{5}=\infty \quad \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} 8 x^{5}=-\infty
\end{aligned}
$$

Example 5. For the function $g(x)$ given below, determine what monomial the function approaches for large x. Then, evaluate $\lim _{x \rightarrow \infty} g(x)$ and $\lim _{x \rightarrow-\infty} g(x)$. Does the function $g(x)$ have any horizontal asymptotes?

$$
g(x)=\frac{\left(-x^{4}+24 x-78\right)(-2 x+1)}{3 x^{3}-99}
$$

For end behaviour, we look at the leading terms in each factor, since the leading terms will dominate for large $|x|$:

$$
\begin{aligned}
g(x) & =\frac{\left(-x^{4}+24 x-78\right)(-2 x+1)}{3 x^{3}-99} \\
& \sim \frac{\left(-x^{4}\right)(-2 x)}{3 x^{3}}=\frac{2}{3} x^{2} \text { for }|x| \text { large. }
\end{aligned}
$$

Therefore, the end behaviour can be described as: $\lim _{x \rightarrow \infty} f(x)=\infty \quad \lim _{x \rightarrow-\infty} f(x)=\infty$.
The function does not have any horizontal asymptotes.

Example 6. Sketch the rational function $h(x)=\frac{(x+6)^{3}}{2\left(x^{2}-4\right)}$ by hand
(find x-intercepts, vertical asymptotes, slant or horizontal asymptotes, and end behaviour).
The numerator is already factored.
The denominator factors as $2 x^{2}-8=2\left(x^{2}-4\right)=2(x+2)(x-2)$.
Therefore, $h(x)=\frac{(x+6)^{3}}{2 x^{2}-8}=\frac{(x+6)^{3}}{2(x+2)(x-2)}$.
The zero of the numerator is $x=6$, which is multiplicity 3 (odd), so the function will cross the x-axis here. Since the multiplicity is greater than 2 , the graph will be flat (horizontal) near $x=6$.

The denominator is zero when $x=2$ and $x=-2$, so these are vertical asymptotes. Since the multiplicity of these points is odd, the function will change sign at $x=2$ and $x=-2$.

For end behaviour, we can look at what happens for $|x|$ very large:

$$
h(x)=\frac{(x+6)^{3}}{2 x^{2}-8} \sim \frac{(x)^{3}}{2 x^{2}}=\frac{x}{2}
$$

This means that for $|x|$ very large the function $h(x)$ will approach the straight line $y=x / 2$. This is a slant asymptote.
We have enough information to plot the function. The dashed line in the plot is the slant asymptote $y=x / 2$.

Example 7. Solve the inequality $\frac{|x-2|(-4 x-5)}{x-5} \leq 0$ by constructing a sign chart, or drawing an appropriate sketch by hand. Show your work.
I will solve this using a sign chart, and examining the sign of the factors.
The numerator of the function $f(x)=\frac{|x-2|(-4 x-5)}{x-5}$ is zero when $x=-5 / 4, x=2$.
The denominator of f is zero when $x=5$.

From the sign chart, we see that $\frac{|x-2|(-4 x-5)}{x-5} \leq 0$ if $x \in(-\infty,-5 / 4] \cup(5, \infty)$. We exclude $x=5$, since the function is not defined there.

Example 8. Solve the inequality $\frac{1}{x+2} \leq-\frac{1}{x^{2}}$ by constructing a sign chart, or drawing an appropriate sketch by hand. Show all your work.

We need to write this as a single rational function, rather than as a sum of rational functions, before we can construct our sign chart or a sketch.

$$
\begin{aligned}
\frac{1}{x+2}+\frac{1}{x^{2}} & \leq 0 \\
\frac{1}{x+2}\left(\frac{x^{2}}{x^{2}}\right)+\frac{1}{x^{2}}\left(\frac{x+2}{x+2}\right) & \leq 0 \\
\frac{x^{2}+x+2}{(x+2)\left(x^{2}\right)} & \leq 0
\end{aligned}
$$

Let's construct a sign chart.
The quadratic in the numerator has no real roots.
The denominator is zero if $x=-2,0$. These are the possible values where the function will change sign.

$\frac{(+)}{(-)(+)}$	∞	$\frac{(+)}{(+)(+)}$	∞	$\frac{(+)}{(+)(+)}$
negative	-2	positive	0	positive

From the sign chart, we see that $\frac{1}{x+2} \leq-\frac{1}{x^{2}}$ if $x \in(-\infty,-2)$.
Example 9. Solve $\frac{3 x}{x+1}+\frac{5}{x-2}=\frac{15}{x^{2}-x-2}$ for x.

$$
\begin{aligned}
\frac{3 x}{x+1}+\frac{5}{x-2} & =\frac{15}{x^{2}-x-2} \\
\frac{3 x}{x+1}+\frac{5}{x-2} & =\frac{15}{(x-2)(x+1)} \\
(x-2)(x+1)\left[\frac{3 x}{x+1}+\frac{5}{x-2}\right. & \left.=\frac{15}{(x-2)(x+1)}\right] \quad \text { multiply by LCD }(x-2)(x+1) \\
3 x(x-2)+5(x+1) & =15 \quad x \neq 2,-1 \\
3 x^{2}-6 x+5 x+5-15 & =0 \\
3 x^{2}-x-10 & =0 \\
(3 x+5)(x-2) & =0 \quad x \neq 2,-1 \\
& \neq 2,-1 \\
& =2,-1
\end{aligned}
$$

The solution to the original rational equation are $x=-5 / 3$. The $x=2$ is an extraneous solution.

Example 10. The volume of an enclosed gas (at a constant temperature) varies inversely as the pressure. This means the relationship between volume V and pressure P can be written as

$$
V=\frac{k}{P}
$$

(Boyle's Law)
where k is the proportionality constant.
If the pressure of a 3.46 L sample of neon gas at $302^{\circ} \mathrm{K}$ is 0.926 atm , what would the volume be at a pressure of 1.452 atm if the temperature does not change? Since this problem is from chemistry, you can have a solution that uses decimals rather than fractions.

The relation we have is

$$
V=\frac{k}{P}
$$

We can use the first data point to determine the proportionality constant k :

$$
k=V P=(3.46)(0.926)=3.20396
$$

The relationship is therefore

$$
V=\frac{3.20396}{P}
$$

and we have

$$
V=\frac{3.20396}{1.452}=2.20658
$$

So the volume would be 2.20658 L .

