You should be able to answer questions dealing with these concepts. Study the practice problems, guided examples, WeBWorK, and examples worked in the textbook, as well as the practice test.

## Previous work that will be needed

- composition of functions
- quadratic formula
- inverse functions
- transforming functions
- basic properties of functions (domain, range, symmetry, etc)
- average rate of change (could be one involving square root, fractions, or powers)


## Exponential, Logistic, and Logarithmic Functions

- exponential functions $y=e_{c}^{k x}$ or $y=b^{x}$
- logistic functions $y=\frac{c}{1+a e^{-k x}}$
- properties of exponents: If $x$ and $y$ are real numbers, and $b>0$ is real, then

1. $b^{x} \cdot b^{y}=b^{x+y}$
2. $\frac{b^{x}}{b^{y}}=b^{x-y}$
3. $\left(b^{x}\right)^{y}=b^{x y}$

- nomenclature: base, exponent
- exponential growth $(b>1)$ and exponential decay $(0<b<1)$
- the natural base $e$
- the basic functions $y=e^{x}$ and $y=\ln x$
- sketching and transforming exponential functions
- constructing exponential population models
- logarithmic functions $f(x)=\log _{b} x$
- interpreted as the inverse function of the exponential function
- sketching and transforming logarithmic functions
- properties of logarithms: If $x$ and $y$ are positive numbers, and $b>0, b \neq 1$ is real, then

1. $\log _{b}(x y)=\log _{b} x+\log _{b} y$
2. $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$
3. $\log _{b}\left(x^{r}\right)=r \log _{b} x$ where r is any real number

- change of base
- common logarithms $(y=\log x)$ and natural logarithms $(y=\ln x)$
- solving equations involving logarithms and exponentials
- extraneous solutions

