Note: You can expect other types of questions on the test than the ones presented here!

Questions

Example 1 State the amplitude, period, and frequency of the sinusoid, and the phase shift and vertical translation.

$$y = \frac{2}{3}\sin\left(\frac{6x-3}{4}\right) + 1.$$

Example 2 Find $\sec \theta$ if $\tan \theta = \frac{1}{5}$ and $\sin \theta < 0$.

Example 3 Explain why $\cos \pi/4 = \frac{1}{\sqrt{2}}$

Example 4 What is $\csc \pi/3$?

Example 5 Find exactly the cosecant of an angle in standard position that has a terminal side that ends at the point P(-12, 12).

Example 6 What is $\lim_{x\to 0} \arcsin x$?

Example 7 Find the exact value of $\operatorname{arccos}(-1/2)$.

Example 8 Find an algebraic expression equivalent to the expression tan(arccos(z + 1)).

Example 9 Explain why $\cot(-3\pi/4) = 1$.

Solutions

Example 1 State the amplitude, period, and frequency of the sinusoid, and the phase shift and vertical translation.

$$y = \frac{2}{3}\sin\left(\frac{6x-3}{4}\right) + 1.$$

The amplitude of the sinusoid is $\left|\frac{2}{3}\right| = \frac{2}{3}$.

There is a vertical translation of +1 units upwards.

The sine function has period 2π . Therefore, $\sin \theta$ completes one period if $0 \le \theta \le 2\pi$. Therefore, the sinusoid will complete one period if

 $\begin{array}{l} 0 \leq \frac{6x-3}{4} \leq 2\pi \\ 0 \leq 6x-3 \leq 8\pi \\ 3 \leq 6x \leq 3+8\pi \\ \frac{1}{2} \leq x \leq \frac{1}{2}+\frac{4\pi}{3} \end{array}$

This function has period $\frac{4\pi}{3}$, and a phase shift of 1/2 units.

The frequency is $\frac{3}{4\pi}$.

Example 2 Find $\sec \theta$ if $\tan \theta = \frac{1}{5}$ and $\sin \theta < 0$.

Since $\sin \theta$ is less than zero, we must be in either Quadrant III or IV. Since $\tan \theta$ is greater than zero we must be in either Quadrant I or III. Therefore, the angle θ has a terminal side in Quadrant III.

Since $\tan \theta = \frac{y}{x} = \frac{1}{5} = \frac{-1}{-5}$, we have x = -5, y = -1.

The distance $r = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + (-5)^2} = \sqrt{26}$.

Therefore,
$$\sec \theta = \frac{1}{\cos \theta} = \frac{r}{x} = \frac{\sqrt{26}}{-5} = -\frac{\sqrt{26}}{5}.$$

Example 3 Explain why $\cos \pi/4 = \frac{1}{\sqrt{2}}$

Consider the square given below.

The angle here must be $\pi/4$ radians, since this triangle is half of a square of side length 1.

Now, we can write down all the trig functions for an angle of $\pi/4$ radians = 45 degrees:

$$\cos\left(\frac{\pi}{4}\right) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}}$$

Example 4 What is $\csc \pi/3$?

This angle, $\pi/3$, is one of our special angles.

Recall that $\pi/3 = 60^{\circ}$.

 $\sin \pi/3 = \operatorname{opp/hyp} = \sqrt{3}/2.$

 $\csc \pi/3 = 1/\sin \pi/3 = 2/\sqrt{3}.$

Example 5 Find exactly the cosecant of an angle in standard position that has a terminal side that ends at the point P(-12, 12).

 $\sin \theta = \frac{y}{r}. \qquad \qquad \csc \theta = \frac{1}{\sin \theta} = \frac{r}{y} = \frac{12\sqrt{2}}{12} = \sqrt{2}.$

Example 6 What is $\lim_{x \to 0} \arcsin x$?

We could sketch the arcsine function, and read the limit off of the sketch. Or we could do the following.

Let $\theta = \arcsin x$. Then $\sin \theta = x$.

If we take the limit as x approaches zero, that means we want to solve the equation $\sin \theta = 0$.

The angle which has a sine of zero is $\theta = 0$.

Note we cannot use $\theta = \pi, 2\pi$, etc. since these values of theta are not in the restricted domain of the sine function which we must use when we construct the inverse sine function.

Therefore, $\lim_{x \to 0} \arcsin x = \lim_{x \to 0} \theta = 0.$

Example 7 Find the exact value of $\operatorname{arccos}(-1/2)$.

We could sketch the arcsine function, and attempt to read the value off of the sketch. Or we could do the following.

Let $\theta = \arccos(-1/2)$. Then $\cos \theta = -1/2$.

Since the cosine is less than zero, θ must be in Quadrant II. The angle θ can't be in Quadrant III since the accosine results in an angle only in Quadrant I or II (range of accosine function is $[0, \pi]$).

 $\cos \theta = -\frac{1}{2} = \frac{-1}{2} = \frac{x}{r}$, so x = -1, r = 2.

Using the Pythagorean theorem, we have $y = \sqrt{r^2 - x^2} = \sqrt{(2)^2 - (-1)^2} = \sqrt{3}$.

Since we are told to find the value exactly, we expect this problem to have one of our two special triangles in it somewhere.

If we can figure out β , we can find θ by using $\theta + \beta = \pi$.

Construct a reference triangle for the angle β (ignoring signs at this point, since we only need to know what β is):

$$\cos\beta = \frac{1}{2} = \frac{\mathrm{adj}}{\mathrm{hyp}}.$$

Compare with the following:

So $\beta = 60^{\circ} = \pi/3$.

Therefore, $\theta = \pi - \pi/3 = 2\pi/3$.

Example 8 Find an algebraic expression equivalent to the expression tan(arccos(z+1)).

To simplify this let $\theta = \arccos(z+1)$. This means $\cos \theta = z+1 = \frac{z+1}{1} = \frac{\operatorname{adj}}{\operatorname{hyp}}$.

Construct a reference triangle

hyp=1

$$\underline{\theta}$$

 $adj=z+1$
 $opp=\sqrt{-2z-z^2}$

The length of the opposite side was found using the Pythagorean theorem:

opp =
$$\sqrt{1^2 - (z+1)^2} = \sqrt{1 - (z^2 + 2z + 1)} = \sqrt{-z^2 - 2z}.$$

Therefore, we have

$$\tan\left(\arccos(z+1)\right) = \tan\theta = \frac{\operatorname{opp}}{\operatorname{adj}} = \frac{\sqrt{-z^2 - 2z}}{z+1}.$$

Example 9 Explain why $\cot(-3\pi/4) = 1$.

