Note: You can expect other types of questions on the test than the ones presented here!
The formulas I have memorized:

$\cos ^{2} x+\sin ^{2} x=1$
$\cos (u-v)=\cos u \cos v+\sin u \sin v$
$\sin (u+v)=\sin u \cos v+\cos u \sin v$

Any other formula I need I will derive from these.

Questions

Example 1 Use the power reducing identities to prove the identity $\cos ^{4} x=\frac{1}{8}(3+4 \cos 2 x+\cos 4 x)$.
Example 2 Solve $\sin 2 x+\sin 4 x=0$ exactly for all solutions in the interval $[0,2 \pi)$.
Example 3 Prove the identity $\sec 2 u=\frac{\sec ^{2} u}{2-\sec ^{2} u}$.
Example 4 Solve $\tan (x / 2)=\sin x$ for $x \in[0, \pi)$.
Example 5 Show why $\tan \left(-\frac{\pi}{12}\right)=-2+\sqrt{3}$ using angle difference formulas.
Problem 6 Derive the Law of Cosines, $a^{2}=b^{2}+c^{2}-2 b c \cos A$, given the triangle

Solutions

Example 1 Use the power reducing identities to prove the identity $\cos ^{4} x=\frac{1}{8}(3+4 \cos 2 x+\cos 4 x)$.

$$
\cos ^{4} x=\left(\cos ^{2} x\right)^{2}
$$

Pause to figure out the trig identity we need. It looks like we want a power reducing identity, since we are headed towards something with no powers of trig functions.

$$
\begin{aligned}
\cos (u-v) & =\cos u \cos v+\sin u \sin v \\
\cos (u+v)=\cos (u-(-v)) & =\cos u \cos (-v)+\sin u \sin (-v) \\
& =\cos u \cos v-\sin u \sin v \\
\cos (2 u) & =\cos ^{2} u-\sin ^{2} u \\
& =\cos ^{2} u-\left(1-\cos ^{2} u\right) \\
& =2 \cos ^{2} u-1 \\
\cos ^{2} u & =\frac{1+\cos 2 u}{2}
\end{aligned}
$$

Back to our problem:

$$
\begin{aligned}
\cos ^{4} x & =\left(\cos ^{2} x\right)^{2} \\
& =\left(\frac{1+\cos 2 x}{2}\right)^{2}, \quad \text { using } \cos ^{2} u=\frac{1+\cos 2 u}{2}, \text { with } u=x \\
& =\frac{1}{4}(1+\cos 2 x)^{2} \\
& =\frac{1}{4}\left(1+\cos ^{2} 2 x+2 \cos 2 x\right) \\
& =\frac{1}{4}\left(1+\left(\frac{1+\cos 4 x}{2}\right)+2 \cos 2 x\right), \quad \text { using } \cos ^{2} u=\frac{1+\cos 2 u}{2}, \text { with } u=2 x \\
& =\frac{1}{4}\left(\frac{2}{2}+\frac{1+\cos 4 x}{2}+\frac{4 \cos 2 x}{2}\right) \\
& =\frac{1}{8}(2+1+\cos 4 x+4 \cos 2 x) \\
& =\frac{1}{8}(3+\cos 4 x+4 \cos 2 x) \\
& =\frac{1}{8}(3+4 \cos 2 x+\cos 4 x)
\end{aligned}
$$

Example 2 Solve $\sin 2 x+\sin 4 x=0$ exactly for all solutions in the interval $[0,2 \pi)$.

$$
\begin{aligned}
\sin 2 x+\sin 4 x= & \sin 2 x+2 \sin 2 x \cos 2 x, \quad \text { use } \sin 2 u=2 \sin u \cos u \text { with } u=2 x . \\
= & \sin 2 x(1+2 \cos 2 x)=0 \\
& \sin 2 x=0 \quad \text { or } \quad 1+2 \cos 2 x=0 \\
& \sin y=0 \quad \text { or } \quad 1+2 \cos y=0
\end{aligned}
$$

Where we have let $y=2 x$. Since we want $x \in[0,2 \pi)$, we should search for all solutions $y \in[0,4 \pi)$.
First, $\sin y=0$ if $y=0, \pi, 2 \pi, 3 \pi$. These are all the solutions for $y \in[0,4 \pi)$.

$$
\begin{array}{rll}
y=2 x=0 & \longrightarrow & x=0 \\
y=2 x=\pi & \longrightarrow & x=\frac{\pi}{2} \\
y=2 x=2 \pi & \longrightarrow & x=\pi \\
y=2 x=3 \pi & \longrightarrow & x=\frac{3 \pi}{2}
\end{array}
$$

Now, $1+2 \cos y=0$, which means $\cos y=-\frac{1}{2}$.
Since the cosine is negative, we must be in either Quadrant II or III.
Let's figure out what the solution to $\cos w=\operatorname{adj} / \mathrm{hyp}=\frac{1}{2}$ is. This comes from one of our special triangles:

So $w=\pi / 3$. We want the corresponding solutions in Quadrants II and III.

$$
\begin{aligned}
& y=\pi-w=\frac{2 \pi}{3} \\
& y=\pi+w=\frac{4 \pi}{3}
\end{aligned}
$$

Now we need all the solutions $y \in[0,4 \pi)$:

$$
\begin{aligned}
& y=\frac{2 \pi}{3} \\
& y=\frac{4 \pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{2 \pi}{3}+2 \pi=\frac{8 \pi}{3} \\
& y=\frac{4 \pi}{3}+2 \pi=\frac{10 \pi}{3}
\end{aligned}
$$

Now we need the solutions we seek, x :

$$
\begin{array}{rll}
y=2 x=\frac{2 \pi}{3} & \longrightarrow & x=\frac{\pi}{3} \\
y=2 x=\frac{4 \pi}{3} & \longrightarrow & x=\frac{2 \pi}{3} \\
y=2 x=\frac{8 \pi}{3} & \longrightarrow & x=\frac{4 \pi}{3} \\
y=2 x=\frac{10 \pi}{3} & \longrightarrow & x=\frac{5 \pi}{3}
\end{array}
$$

There are eight values of x in $[0,2 \pi)$ which solve the equation.
Example 3 Prove the identity $\sec 2 u=\frac{\sec ^{2} u}{2-\sec ^{2} u}$.

$$
\sec 2 u=\frac{1}{\cos 2 u}
$$

Pause to figure out the trig identity we need.

$$
\begin{aligned}
\cos (u-v) & =\cos u \cos v+\sin u \sin v \\
\cos (u+v)=\cos (u-(-v)) & =\cos u \cos (-v)+\sin u \sin (-v) \\
& =\cos u \cos v-\sin u \sin v \\
\cos (2 u) & =\cos ^{2} u-\sin ^{2} u
\end{aligned}
$$

Back to our problem:

$$
\begin{aligned}
\sec 2 u & =\frac{1}{\cos 2 u} \\
& =\frac{1}{\cos ^{2} u-\sin ^{2} u} \\
& =\frac{1}{\cos ^{2} u-\sin ^{2} u} \cdot\left(\frac{\sec ^{2} u}{\sec ^{2} u}\right) \\
& =\frac{\sec ^{2} u}{\left(\cos ^{2} u-\sin ^{2} u\right) \sec ^{2} u} \\
& =\frac{\sec ^{2} u}{\left(\cos ^{2} u-\sin ^{2} u\right) \frac{1}{\cos ^{2} u}} \\
& =\frac{\sec ^{2} u}{1-\tan ^{2} u}
\end{aligned}
$$

Pause to figure out the trig identity we need.

$$
\cos ^{2} x+\sin ^{2} x=1
$$

$$
\begin{aligned}
\frac{\cos ^{2} x}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x} & =\frac{1}{\cos ^{2} x} \\
1+\tan ^{2} x & =\sec ^{2} x \\
\tan ^{2} x & =\sec ^{2} x-1
\end{aligned}
$$

Back to our problem:

$$
\begin{aligned}
\sec 2 u & =\frac{\sec ^{2} u}{1-\tan ^{2} u} \\
& =\frac{\sec ^{2} u}{1-\left(\sec ^{2} u-1\right)} \\
\sec 2 u & =\frac{\sec ^{2} u}{2-\sec ^{2} u}
\end{aligned}
$$

Example 4 Solve $\tan (x / 2)=\sin x$ for $x \in[0, \pi)$.
We need to convert the half angle tangent function to trig functions of x.
Pause to work out some trig identities:

$$
\begin{aligned}
\cos (u-v) & =\cos u \cos v+\sin u \sin v \\
\cos (u+v)=\cos (u-(-v)) & =\cos u \cos (-v)+\sin u \sin (-v) \\
& =\cos u \cos v-\sin u \sin v \\
\cos (2 u) & =\cos ^{2} u-\sin ^{2} u \\
& =\cos ^{2} u-\left(1-\cos ^{2} u\right) \\
& =2 \cos ^{2} u-1 \\
\cos ^{2} u & =\frac{1}{2}(1+\cos 2 u) \\
\cos (2 u) & =\cos ^{2} u-\sin ^{2} u \\
& =\left(1-\sin ^{2} u\right)-1 \\
& =1-2 \sin ^{2} u \\
\sin ^{2} u & =\frac{1}{2}(1-\cos 2 u) \\
\tan ^{2} u & =\frac{\sin ^{2} u}{\cos ^{2} u} \\
& =\frac{1-\cos 2 u}{1+\cos 2 u} \\
& =\frac{1-\cos 2 u}{1+\cos 2 u} \cdot\left(\frac{1-\cos 2 u}{1-\cos 2 u}\right) \\
& =\frac{(1-\cos 2 u)^{2}}{1-\cos 2 u} \\
& =\frac{(1-\cos 2 u)^{2}}{\sin ^{2} 2 u} \\
\tan ^{2} u & =\left(\frac{1-\cos 2 u}{\sin ^{2} 2 u}\right)
\end{aligned}
$$

$$
\tan u=\frac{1-\cos 2 u}{\sin 2 u}
$$

The last line is true since $\sin 2 u$ and $\tan u$ have the same sign at any point.
This was a serious amount of work, but look at how many trig identities we found along the way! On a test, these identities can be reused in other problems if needed. This is probably the most work you would ever have to do so derive certain trig identities; most of the time the derivation will be significantly shorter.

Now we can work on our problem:

$$
\begin{aligned}
\tan (x / 2) & =\sin x \\
\frac{1-\cos x}{\sin x} & =\sin x, \quad \text { (above formula with } u=x / 2) \\
1-\cos x & =\sin ^{2} x \\
1-\cos x & =1-\cos ^{2} x \\
-\cos x & =-\cos ^{2} x \\
\cos ^{2} x-\cos x & =0 \\
\cos x(\cos x-1) & =0
\end{aligned}
$$

So we need to solve $\cos x=0$ and $\cos x-1=0$.
For the first, $\cos x=0$ for $x=\pi / 2 \in[0, \pi)$.
For the second, $\cos x=1$ for $x=0 \in[0, \pi)$.
The two solutions are $x=0, \frac{\pi}{2}$ for $x \in[0, \pi)$.
Example 5 Show why $\tan \left(-\frac{\pi}{12}\right)=-2+\sqrt{3}$ using angle difference formulas.
We can write the tangent in terms of sine and cosine functions:

$$
\tan \left(-\frac{\pi}{12}\right)=\frac{\sin \left(-\frac{\pi}{12}\right)}{\cos \left(-\frac{\pi}{12}\right)}
$$

Now, we need to figure out how to relate $-\pi / 12$ to some of our special angles, since we are told to find this answer exactly.

$$
\frac{-\pi}{12}=\frac{-2 \pi}{24}=\frac{4 \pi-6 \pi}{24}=\frac{\pi}{6}-\frac{\pi}{4} .
$$

Here are the reference triangles we will need:

We need cosine and sine of a difference identities, which are

$$
\begin{aligned}
\cos (u-v) & =\cos u \cos v+\sin u \sin v \text { (memorized) } \\
\sin (u+v) & =\sin u \cos v+\cos u \sin v \text { (memorized) } \\
\sin (u-v) & =\sin (u+(-v)) \text { (work this out, using above identity) } \\
& =\sin u \cos (-v)+\cos u \sin (-v) \\
\sin (u-v) & =\sin u \cos v-\cos u \sin v \text { (since cosine is even and sine is odd) }
\end{aligned}
$$

We have what we need to solve the problem.
Therefore,

$$
\begin{aligned}
\sin \left(-\frac{\pi}{12}\right) & =\sin \left(\frac{\pi}{6}-\frac{\pi}{4}\right) \\
& =\sin \left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{4}\right)-\cos \left(\frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}\right), \quad \text { use } \sin (u-v)=\sin u \cos v-\cos u \sin v \\
& =\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)-\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right), \quad \text { using reference triangles above } \\
& =\frac{1}{2 \sqrt{2}}-\frac{\sqrt{3}}{2 \sqrt{2}}=\frac{1-\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\cos \left(-\frac{\pi}{12}\right) & =\cos \left(\frac{\pi}{6}-\frac{\pi}{4}\right) \\
& =\cos \left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}\right), \quad \text { use } \cos (u-v)=\cos u \cos v+\sin u \sin v \\
& =\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right), \quad \text { using reference triangles above } \\
& =\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}
\end{aligned}
$$

So we have

$$
\tan \left(-\frac{\pi}{12}\right)=\frac{\sin \left(-\frac{\pi}{12}\right)}{\cos \left(-\frac{\pi}{12}\right)}=\left(\frac{1-\sqrt{3}}{2 \sqrt{2}}\right) \times\left(\frac{2 \sqrt{2}}{\sqrt{3}+1}\right)=\frac{1-\sqrt{3}}{1+\sqrt{3}}
$$

To get the final result asked for, we can rationalize the denominator:

$$
\tan \left(-\frac{\pi}{12}\right)=\frac{1-\sqrt{3}}{1+\sqrt{3}}=\frac{1-\sqrt{3}}{1+\sqrt{3}} \times\left(\frac{1-\sqrt{3}}{1-\sqrt{3}}\right)=\frac{1-2 \sqrt{3}+3}{1-3}=\frac{4-2 \sqrt{3}}{-2}=-2+\sqrt{3}
$$

Problem 6 Derive the Law of Cosines, $a^{2}=b^{2}+c^{2}-2 b c \cos A$, given the triangle

The law of cosines is a generalization of the Pythagorean theorem. It can be derived in a manner similar to how we derived the formula for $\cos (u-v)$. Let's introduce a coordinate system (my triangle has changed in scale, but otherwise the edges a, b, and c all line up!):

The coordinates of the point C satisfy:

$$
\frac{x}{b}=\cos A \quad \text { and } \quad \frac{y}{b}=\sin A
$$

Therefore, $x=b \cos A$ and $y=b \sin A$. Using the distance formula, we can write for the distance from point C to B :

$$
\begin{aligned}
a & =\sqrt{(x-c)^{2}+(y-0)^{2}} \\
a^{2} & =(x-c)^{2}+y^{2} \\
a^{2} & =(b \cos A-c)^{2}+(b \sin A)^{2} \\
a^{2} & =b^{2} \cos ^{2} A+c^{2}-2 b c \cos A+b^{2} \sin ^{2} A \\
a^{2} & =b^{2}\left(\cos ^{2} A+\sin ^{2} A\right)+c^{2}-2 b c \cos A \\
a^{2} & =b^{2}(1)+c^{2}-2 b c \cos A \\
a^{2} & =b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

