Questions

Example Evaluate the limit and justify each step by indicating the appropriate limit law

$$
\lim _{x \rightarrow-1} \frac{x-2}{x^{2}+4 x-3}
$$

Example The signum or sign function, denoted by sgn, is defined by

$$
\operatorname{sgn}(x)=\left\{\begin{aligned}
-1 & \text { if } x<0 \\
0 & \text { if } x=0 \\
1 & \text { if } x>0
\end{aligned}\right.
$$

a) Sketch the graph of this function.
b) Find each of the following limits or explain why it does not exist.
i) $\lim _{x \rightarrow 0^{+}} \operatorname{sgn}(x)$
ii) $\lim _{x \rightarrow 0^{-}} \operatorname{sgn}(x)$
iii) $\lim _{x \rightarrow 0} \operatorname{sgn}(x)$
iv) $\lim _{x \rightarrow 0}|\operatorname{sgn}(x)|$

Example If the symbol $\llbracket \cdot \rrbracket$ denotes the greatest integer function defined as $\llbracket x \rrbracket=$ the largest integer that is less than or equal to x, evaluate
i) $\lim _{x \rightarrow-2^{+}} \llbracket x \rrbracket$
ii) $\lim _{x \rightarrow-2} \llbracket x \rrbracket$
iii) $\lim _{x \rightarrow-2.4} \llbracket x \rrbracket$
b) If n is an integer, evaluate
i) $\lim _{x \rightarrow n^{-}} \llbracket x \rrbracket$
ii) $\lim _{x \rightarrow n^{+}} \llbracket x \rrbracket$
c) For what values of a does $\lim _{x \rightarrow a} \llbracket x \rrbracket$ exist?

Solutions

Example Evaluate the limit and justify each step by indicating the appropriate limit law

$$
\lim _{x \rightarrow-1} \frac{x-2}{x^{2}+4 x-3}
$$

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{x-2}{x^{2}+4 x-3} & =\frac{\lim _{x \rightarrow-1}(x-2)}{\lim _{x \rightarrow-1}\left(x^{2}+4 x-3\right)} \text { law } 5 ; \text { as long as } \lim _{x \rightarrow-1}\left(x^{2}+4 x-3\right) \neq 0 \\
& =\frac{\lim _{x \rightarrow-1} x-\lim _{x \rightarrow-1} 2}{\lim _{x \rightarrow-1} x^{2}+\lim _{x \rightarrow-1} 4 x-\lim _{x \rightarrow-1} 3} \quad \text { law } 1 ; \text { law } 2 \\
& =\frac{\lim _{x \rightarrow-1} x-\lim _{x \rightarrow-1} 2}{\left[\lim _{x \rightarrow-1} x\right]^{2}+4 \lim _{x \rightarrow-1} x-\lim _{x \rightarrow-1} 3} \quad \text { law } 3 ; \text { law } 6 \\
& =\frac{(-1)-2}{(-1)^{2}+4(-1)-3} \text { law 7; law } 8 \\
& =\frac{-3}{-6}=\frac{1}{2}
\end{aligned}
$$

Example The signum or sign function, denoted by sgn, is defined by

$$
\operatorname{sgn}(x)=\left\{\begin{aligned}
-1 & \text { if } x<0 \\
0 & \text { if } x=0 \\
1 & \text { if } x>0
\end{aligned}\right.
$$

a) Sketch the graph of this function.
b) Find each of the following limits or explain why it does not exist.
i) $\lim _{x \rightarrow 0^{+}} \operatorname{sgn}(x)$
ii) $\lim _{x \rightarrow 0^{-}} \operatorname{sgn}(x)$
iii) $\lim _{x \rightarrow 0} \operatorname{sgn}(x)$
iv) $\lim _{x \rightarrow 0}|\operatorname{sgn}(x)|$

Here is a sketch of the sgn function:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \operatorname{sgn}(x) & =\lim _{x \rightarrow 0^{+}}(1) \quad \text { since } \operatorname{sgn}(x)=1 \text { if } x>0 \\
& =1 \\
\lim _{x \rightarrow 0^{-}} \operatorname{sgn}(x) & =\lim _{x \rightarrow 0^{-}}(-1) \quad \text { since } \operatorname{sgn}(x)=-1 \text { if } x<0 \\
& =-1
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 0} \operatorname{sgn}(x)$ does not exist since the right hand limit does not equal the left hand limit.
Let's write down the functional definition of $|\operatorname{sgn}(x)|$ and sketch a graph to help us find those limits:

$$
\begin{aligned}
|\operatorname{sgn}(x)| & =\left\{\begin{aligned}
\operatorname{sgn}(x) & \text { if } \operatorname{sgn}(x) \geq 0 \\
-\operatorname{sgn}(x) & \text { if } \operatorname{sgn}(x)<0
\end{aligned}\right. \\
= & \begin{cases}0 & \text { if } x=0 \\
1 & \text { if } x>0 \\
1 & \text { if } x<0\end{cases} \\
& = \begin{cases}0 & \text { if } x=0 \\
1 & \text { if } x \neq 0\end{cases}
\end{aligned}
$$

Since the left hand limit equals the right hand limit, we have $\lim _{x \rightarrow 0}|\operatorname{sgn}(x)|=1$.

Example If the symbol $\llbracket \cdot \rrbracket$ denotes the greatest integer function defined as $\llbracket x \rrbracket=$ the largest integer that is less than or equal to x, evaluate
i) $\lim _{x \rightarrow-2^{+}} \llbracket x \rrbracket$
ii) $\lim _{x \rightarrow-2} \llbracket x \rrbracket$
iii) $\lim _{x \rightarrow-2.4} \llbracket x \rrbracket$
b) If n is an integer, evaluate
i) $\lim _{x \rightarrow n^{-}} \llbracket x \rrbracket$
ii) $\lim _{x \rightarrow n^{+}} \llbracket x \rrbracket$
c) For what values of a does $\lim _{x \rightarrow a} \llbracket x \rrbracket$ exist?

The greatest integer function is piecewise defined and changes definitions at integer values of x. The sketch below shows the greatest integer function in the region of the integer $x=n$. We can use this to help us answer questions regarding the limit.

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}} \llbracket x \rrbracket=-2 \quad \text { (think of } n=-2 \text { in the above sketch) } \\
& \lim _{x \rightarrow-2^{-}} \llbracket x \rrbracket=-3 \quad \text { (think of } n=-2 \text { in the above sketch) } \\
& \lim _{x \rightarrow-2} \llbracket x \rrbracket \text { does not exist since left hand limit does not equal right hand limit } \\
& \lim _{x \rightarrow-2.4-} \llbracket x \rrbracket=-3 \quad \text { (think of } n=-2 \text { in the above sketch) } \\
& \lim _{x \rightarrow n^{+}} \llbracket x \rrbracket= n \\
& \lim _{x \rightarrow n^{-}} \llbracket x \rrbracket= n-1
\end{aligned}
$$

The values of a for which $\lim _{x \rightarrow a} \llbracket x \rrbracket$ exists is all a which are not an integer.

