Questions

Example Evaluate the limit and justify each step by indicating the appropriate limit law

$$\lim_{x \to -1} \frac{x-2}{x^2 + 4x - 3}.$$

Example The signum or sign function, denoted by sgn, is defined by

$$\operatorname{sgn}(x) = \begin{cases} -1 & \text{if } x < 0\\ 0 & \text{if } x = 0\\ 1 & \text{if } x > 0 \end{cases}$$

a) Sketch the graph of this function.

b) Find each of the following limits or explain why it does not exist.

i) $\lim_{x \to 0^+} \operatorname{sgn}(x)$ ii) $\lim_{x \to 0^-} \operatorname{sgn}(x)$ iii) $\lim_{x \to 0} \operatorname{sgn}(x)$ iv) $\lim_{x \to 0} |\operatorname{sgn}(x)|$

Example If the symbol $[\![\cdot]\!]$ denotes the greatest integer function defined as $[\![x]\!]$ = the largest integer that is less than or equal to x, evaluate

 $\mathrm{i)} \lim_{x \to -2^+} \llbracket x \rrbracket \qquad \mathrm{ii)} \lim_{x \to -2} \llbracket x \rrbracket \qquad \mathrm{iii)} \lim_{x \to -2.4} \llbracket x \rrbracket$

b) If n is an integer, evaluate

i)
$$\lim_{x \to n^-} \llbracket x \rrbracket$$
 ii) $\lim_{x \to n^+} \llbracket x \rrbracket$

c) For what values of a does $\lim_{x \to a} \llbracket x \rrbracket$ exist?

Solutions

Example Evaluate the limit and justify each step by indicating the appropriate limit law

$$\lim_{x \to -1} \frac{x-2}{x^2 + 4x - 3}.$$

$$\lim_{x \to -1} \frac{x-2}{x^2+4x-3} = \frac{\lim_{x \to -1} (x-2)}{\lim_{x \to -1} (x^2+4x-3)} \text{ law 5; as long as } \lim_{x \to -1} (x^2+4x-3) \neq 0$$

$$= \frac{\lim_{x \to -1} x - \lim_{x \to -1} 2}{\lim_{x \to -1} x^2 + \lim_{x \to -1} 4x - \lim_{x \to -1} 3} \text{ law 1; law 2}$$

$$= \frac{\lim_{x \to -1} x - \lim_{x \to -1} 2}{\left[\lim_{x \to -1} x\right]^2 + 4\lim_{x \to -1} x - \lim_{x \to -1} 3} \text{ law 3; law 6}$$

$$= \frac{(-1)-2}{(-1)^2 + 4(-1)-3} \text{ law 7; law 8}$$

$$= \frac{-3}{-6} = \frac{1}{2}$$

Example The *signum* or sign function , denoted by sgn, is defined by

$$\operatorname{sgn}(x) = \begin{cases} -1 & \text{if } x < 0\\ 0 & \text{if } x = 0\\ 1 & \text{if } x > 0 \end{cases}$$

a) Sketch the graph of this function.

b) Find each of the following limits or explain why it does not exist.

i) $\lim_{x \to 0^+} \operatorname{sgn}(x)$ ii) $\lim_{x \to 0^-} \operatorname{sgn}(x)$ iii) $\lim_{x \to 0} \operatorname{sgn}(x)$ iv) $\lim_{x \to 0} |\operatorname{sgn}(x)|$

Here is a sketch of the sgn function:

$$\lim_{x \to 0^{+}} \operatorname{sgn}(x) = \lim_{x \to 0^{+}} (1) \text{ since } \operatorname{sgn}(x) = 1 \text{ if } x > 0$$

= 1
$$\lim_{x \to 0^{-}} \operatorname{sgn}(x) = \lim_{x \to 0^{-}} (-1) \text{ since } \operatorname{sgn}(x) = -1 \text{ if } x < 0$$

= -1

Therefore, $\lim_{x\to 0} \operatorname{sgn}(x)$ does not exist since the right hand limit does not equal the left hand limit.

Let's write down the functional definition of |sgn(x)| and sketch a graph to help us find those limits:

$$|\operatorname{sgn}(x)| = \begin{cases} \operatorname{sgn}(x) & \operatorname{if} \operatorname{sgn}(x) \ge 0 \\ -\operatorname{sgn}(x) & \operatorname{if} \operatorname{sgn}(x) < 0 \end{cases}$$
$$= \begin{cases} 0 & \operatorname{if} x = 0 \\ 1 & \operatorname{if} x < 0 \\ 1 & \operatorname{if} x \neq 0 \end{cases}$$
$$= \begin{cases} 0 & \operatorname{if} x = 0 \\ 1 & \operatorname{if} x \neq 0 \end{cases}$$

$$\lim_{x \to 0^{+}} |\operatorname{sgn}(x)| = \lim_{x \to 0^{+}} (1) \quad \operatorname{since} |\operatorname{sgn}(x)| = 1 \text{ if } x > 0$$
$$= 1$$
$$\lim_{x \to 0^{-}} |\operatorname{sgn}(x)| = \lim_{x \to 0^{-}} (1) \quad \operatorname{since} |\operatorname{sgn}(x)| = 1 \text{ if } x < 0$$
$$= 1$$

Since the left hand limit equals the right hand limit, we have $\lim_{x\to 0} |\operatorname{sgn}(x)| = 1$.

Example If the symbol $[\![\cdot]\!]$ denotes the greatest integer function defined as $[\![x]\!]$ = the largest integer that is less than or equal to x, evaluate

х

 $\mathrm{i)} \lim_{x \to -2^+} \llbracket x \rrbracket \qquad \mathrm{ii)} \lim_{x \to -2} \llbracket x \rrbracket \qquad \mathrm{iii)} \lim_{x \to -2.4} \llbracket x \rrbracket$

Instructor: Barry McQuarrie

1.0

b) If n is an integer, evaluate

 $\mathrm{i)}\,\lim_{x\to n^-}[\![x]\!]\qquad\mathrm{ii)}\,\lim_{x\to n^+}[\![x]\!]$

c) For what values of a does $\lim_{x \to a} [\![x]\!]$ exist?

The greatest integer function is piecewise defined and changes definitions at integer values of x. The sketch below shows the greatest integer function in the region of the integer x = n. We can use this to help us answer questions regarding the limit.

$\lim_{x\to -2^+} [\![x]\!]$	=	-2 (think of $n = -2$ in the above sketch)
		-3 (think of $n = -2$ in the above sketch)
		does not exist since left hand limit does not equal right hand limit
$\lim_{x\to -2.4^-} \llbracket x \rrbracket$	=	-3 (think of $n = -2$ in the above sketch)
$\lim_{x \to n^+} [\![x]\!]$	=	n
$\lim_{x\to n^-} [\![x]\!]$	=	n-1

The values of a for which $\lim_{x \to a} [\![x]\!]$ exists is all a which are not an integer.