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Example (2.9.16) Make a careful sketch of the graph of f(x) = sinx and below it sketch the graph of
f ′(x). Try to guess the formula of f ′(x) from its graph.

1) This is neat! I’ve sketched the sine function, y = f(x) = sin x. The key idea we use over and over again here
is that the value of the derivative at x = a is equal to the slope of the tangent line to the curve at x = a.

At the points where the sine function is ±1 it has a horizontal tangent. This means that the derivative f ′(x)
must be zero at those points. So f ′(π/2) = f ′(3π/2) = 0.

The sine function has a minimum slope at x = π, and if you look closely (or create a new graph by zooming
in) you can guess that the value of that minimum slope is −1. This means that f ′(π) = −1.

The sine function has a maximum slope at x = 0 or 2π, and if you look closely (or create a new graph by
zooming in) you can guess that the value of that minimum slope is +1. This means that f ′(0) = f ′(2π) = 1.

For 0 < x < π/2, the sine function is increasing. This means its derivative will be positive in this region.

For π/2 < x < 3π/2, the sine function is decreasing. This means its derivative will be negative in this region.

For 3π/2 < x < 2π, the sine function is increasing. This means its derivative will be positive in this region.

And that says in words every thought and relation that we used to construct the sketch of the derivative of
the sine function, which is included on the next page. The derivative sure looks like the cosine function!
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Example (2.9.18) Make a careful sketch of the graph of f(x) = lnx and below it sketch the graph of f ′(x).
Try to guess the formula of f ′(x) from its graph.

2) Again, the key idea we use here is that the value of the derivative at x = a is equal to the slope of the
tangent line top the curve at x = a. First, let’s sketch the logarithmic function y = f(x) = lnx.
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This one isn’t as nice as the sine function we just finished, since there are fewer points to help guide us. We
could zoom in on a bunch of points, work out the slope (since the graph will appear as a straight line when
we zoom in) and then plot those values as points on the derivative curve. Joining the points would give us
a graph of the derivative f ′(x).

Instead, let’s do what the problem suggests, and look at the graph in broader scope.

First, the logarithmic function is always increasing, so the derivative function will always be positive.

Second, as the logarithmic function approaches zero from the right, it grows infinitely large negative. This
means our derivative function should “blow up” at x = 0, and since it has to be positive, it must approach
positive infinity. So we know that lim

x→0+
f ′(x) =∞.

The last thing we can say from looking at the graph of the logarithmic function is that the slope of tangent
to the curve is decreasing. This means f ′(x) is a decreasing function of x.

I’ve included all these details in the sketch below. It seems to me that we may have f ′(x) =
1
x

.
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Example (2.9.47) Prove each of the following:
a) The derivative of an even function is an odd function.
b) The derivative of an odd function is an even function.

a) Here, we need to work from the definition of derivative.

f ′(x) = lim
h→0

f(x + h)− f(x)
h

.

If the function f(x) is even, then f(−x) = f(x). To show that the derivative is going to be odd, we need to
show f ′(−x) = −f ′(x).

f ′(−x) = lim
h→0

f(−x + h)− f(−x)
h

= lim
h→0

f(x− h)− f(x)
h

since f is even

Updated June 25, 2003



Calculus I Homework: The Derivative as a Function Page 5

Now we can’t jump to our conclusion too quickly! This doesn’t quite look like the definition of derivative
we know and love. We really want f(x + h) in there. So let’s make a substitution h = −h̃, and see what
happens. As h→ 0, so will h̃→ 0.

f ′(−x) = lim
h̃→0

f(x + h̃)− f(x)

−h̃

= − lim
h̃→0

f(x + h̃)− f(x)

h̃

= −f ′(x)

So we have proven that if f is even, then f ′ is odd.

We will see another way of proving this statement once we have learned the chain rule for derivatives.

b) Here, we need to work from the definition of derivative.

f ′(x) = lim
h→0

f(x + h)− f(x)
h

.

If the function f(x) is odd, then f(−x) = −f(x). To show that the derivative is going to be even, we need
to show f ′(−x) = f ′(x).

f ′(−x) = lim
h→0

f(−x + h)− f(−x)
h

= lim
h→0

−f(x− h) + f(x)
h

since f is odd

= − lim
h→0

f(x− h)− f(x)
h

since f is odd

Just like above, we need to make a substitution before we are done. Let’s make the substitution h = −h̃,
and see what happens. As h→ 0, so will h̃→ 0.

f ′(−x) = − lim
h̃→0

f(x + h̃)− f(x)

−h̃

= + lim
h̃→0

f(x + h̃)− f(x)

h̃

= +f ′(x)

So we have proven that if f is odd, then f ′ is even.
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