If $c \in \mathbb{R}$ then $\frac{d}{dx}[c] =$	If $y = f(x)$, then $y' =$
If $n \in \mathbb{R}$ then $\frac{d}{dx}[x^n] =$	$\frac{d}{dx}[f(x) + g(x)] =$
$\frac{d}{dx}[e^x] =$	$\frac{d}{dx}[f(x) - g(x)] =$
$\frac{d}{dx}[\ln x] =$	If $c \in \mathbb{R}$ then $\frac{d}{dx}[cf(x)] =$
$\frac{d}{dx}[\sin x] =$	$\frac{d}{dx}[f(x)g(x)] =$
$\frac{d}{dx}[\cos x] =$	$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] =$
$\frac{d}{dx}[\tan x] =$	$\frac{d}{dx}[f(g(x))] =$
$\frac{d}{dx}[\cot x] =$	If $y = f(u), u = g(x)$, then $\frac{dy}{dx} =$
$\frac{d}{dx}[\sec x] =$	If $a \in \mathbb{R}$ then $\frac{d}{dx}[a^x] =$
$\frac{d}{dx}[\csc x] =$	If $u = f(x)$ then $\frac{d}{dx}[u^n] =$
$\frac{d}{dx}[\arctan x] =$	Steps in Implicit Differentiation of $F(x, y) = 0$: •
$\frac{d}{dx}[\arcsin x] =$	• • Steps in Logarithmic Differentiation of $y = f(x)$:
$\frac{d}{dx}[\arccos x] =$	•
	_

$\frac{d}{dx}[f(x) + g(x)] =$
$\frac{d}{dx}[f(x) - g(x)] =$
$f c \in \mathbb{R}$ then $\frac{d}{dx}[cf(x)] =$
$\frac{d}{dx}[f(x)g(x)] =$
$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] =$
$\frac{d}{dx}[f(g(x))] =$
f $y = f(u), u = g(x)$, then $\frac{dy}{dx} =$
$f a \in \mathbb{R} \text{ then } \frac{d}{dx}[a^x] =$
f $u = f(x)$ then $\frac{d}{dx}[u^n] =$
n Implicit Differentiation of $F(x, y)$

•

If $c \in \mathbb{R}$ then $\frac{d}{dx}[c] = 0$
If $n \in \mathbb{R}$ then $\frac{d}{dx}[x^n] = nx^{n-1}$
$\frac{d}{dx}[e^x] = e^x$
$\frac{d}{dx}[\ln x] = \frac{1}{x}$
$\frac{d}{dx}[\sin x] = \cos x$
$\frac{d}{dx}[\cos x] = -\sin x$
$\frac{d}{dx}[\tan x] = \sec^2 x$
$\frac{d}{dx}[\cot x] = -\csc^2 x$
$\frac{d}{dx}[\sec x] = \sec x \tan x$
$\frac{d}{dx}[\csc x] = -\csc x \cot x$
$\frac{d}{dx}[\arctan x] = \frac{1}{x^2 + 1}$
$\frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1-x^2}}$
$\frac{d}{dx}[\arccos x] = -\frac{1}{\sqrt{1-x^2}}$

If $y = f(x)$, then $y' = \frac{dy}{dx} = \frac{d}{dx}[y] = f'(x) = \frac{df}{dx} = \frac{d}{dx}[f(x)]$
$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$
$\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]$
If $c \in \mathbb{R}$ then $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$
$\frac{d}{dx}[f(x)g(x)] = g(x)\frac{d}{dx}[f(x)] + f(x)\frac{d}{dx}[g(x)]$
$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{g^2(x)}$
$\frac{d}{dx}[f(g(x))] = \frac{d}{du}[f(u))] \cdot \frac{d}{dx}[g(x)], \ u = g(x)$
If $y = f(u), u = g(x)$, then $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
If $a \in \mathbb{R}$ then $\frac{d}{dx}[a^x] = a^x \ln a$ (chain rule)

If u = f(x) then $\frac{d}{dx}[u^n] = nu^{n-1}\frac{du}{dx}$

Steps in Implicit Differentiation of F(x, y) = 0:

- $\bullet\,$ differentiate both sides of the equation with respect to x
- use chain rule when you encounter any y (ie., $\frac{d}{dx}[y^2] = 2y\frac{dy}{dx}$)
- solve the resulting equation for dy/dx

Steps in Logarithmic Differentiation of y = f(x):

- take natural logarithm of both sides of equation
- use log laws to simplify
- implicitly differentiate with respect to x
- solve the resulting equation for dy/dx