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Note It is generally alright to reuse letters (y, f, u, w, etc.) in your solution to a problem as long as they weren’t part of
the original question. For example, in Example 6, I reuse y, f, u (they stand for different things at different times in my
solution) since they are quantities I introduced in my solution. However, in Example 6, y was part of the original question,
so I do not reuse that variable in my solution. The exception to this is that you can reuse y if your answer is an equation
of a tangent line!

Note Sometimes you have to start using logarithmic differentiation, sometimes you start using a chain rule, etc. It just
depends what you are working on how you should start. Use good notation to help you keep track of parts of your solution,
especially when using a chain rule. If you encounter d

dx [f(x)g(x)], break out u = f(x)g(x) and use logarithmic differentiation

to determine du
dx = d

dx [f(x)g(x)] and sub this back in.

Note on Trigonometric Functions When dealing with trig functions, we must work in radians rather than degrees,
since the integral formulas for the trig functions we derived were all based on the angle being measured in radians. Recall
that to switch between the two measures, we can think that a circle is swept out when the angle goes through 360 degrees,
or 2π radians: 2π radians = 360 degrees .

You should memorize or be able to work out at least the following:

d

dx
[cf(x)] =

d

dx
[f(x) + g(x)] =

d

dx
[f(g(x))] =

d

dx
[f(x)g(x)] =

d

dx

[
f(x)

g(x)

]
=

d

dx
[f(g(x))] =

d

dx
[xn] =

d

dx
[ln |x|] =

d

dx
[ex] =

d

dx
[sinx] =

d

dx
[cosx] =

d

dx
[tanx] =

d

dx
[cscx] =

d

dx
[secx] =

d

dx
[cotx] =

d

dx
[arcsinx] =

d

dx
[arccosx] =

d

dx
[arctanx] =

1. If y = arctan (xx), find y′.

2. Find the equation of the tangent line to the curve

y = x+ cosx at x = π
3 .

3. Find the derivative of g(t) =
sin2 t

cos t
.

4. Use the chain rule to prove that the derivative of an
even function is an odd function.

5. If n is a positive integer, prove that
d

dx
[sinn x cos(nx)] = n sinn−1 x cos((n+ 1)x).

6. y = e−5x cos 3x, find y′(x).

7. f(t) =
1

(t2 − 2t− 5)4
, find f ′(t).

8. For what values of x does the curve y = x+ cos 2x have
horizontal tangents?

9. y = sin(lnx). Find y′.

10. The displacement of a particle on a vibrating string is
given by s = A cos(ωt + δ). Find the velocity of the
particle at time t. When is the velocity zero?

11. Find the x-coordinates in (−π, π) for which the curve
y = sin(2x)−2 sinx has a horizontal tangent line. Solu-
tion requires use of Mathematica to solve an equation,
or you can use trig identities to solve by hand.

12. Given f(x) =

√
x2 + 1

secx sinx+ e2x
, find f ′(x).

13. Given f(x) = cos(cos(cos(cosx))), find f ′(x).

14. Where does the normal line to the ellipse
x2 − xy + y2 = 3 at the point (−1, 1)
intersect the ellipse a second time?

15. Suppose f is a one-to-one differentiable function and
its inverse f−1 is also differentiable. Use implicit dif-
ferentiation to show

d

dx
[f−1(x)] =

1

f ′(f−1(x))

16. If ln(xy) = tan−1 x, find

y′ =
dy

dx
and

y′′ =
d2y

dx2
=

d

dx

[
dy

dx

]
.

17. Find y′ given y = xcos x.

18. Find the equation of the tangent line to the curve
y = f(x) = x2 cos3 x + 12 for any one point on the
curve where the tangent line is horizontal.
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Solutions

1. If y = arctan (xx), find y′.

Solution:

y′ =
dy

dx
=

d

dx
[y] =

d

dx
[arctan (xx)]

=
d

dx
[arctan (u)], u = xx

=
d

du
[arctan (u)] · du

dx
chain rule

So now we need two derivatives. If you need to, you can work out the derivative of arctanu with respect to u using
logarithmic differentiation, or if you have it memorized just write it down.

d

du
[arctanu] =

1

1 + u2

The other derivative du/dx requires logarithmic differentiation, so start by taking a logarithm of u = xx:

ln[u = xx]

lnu = x lnx
d

dx
[lnu = x lnx]

d

du
[lnu]

du

dx
=

d

dx
[x lnx]

1

u

du

dx
= x

d

dx
[lnx] + lnx

d

dx
[x]

du

dx
= u

(
x

1

x
+ lnx

)
du

dx
= xx (1 + lnx)

Put it all back together, and substitute back u = xx:

y′ =
1

1 + u2
· xx (1 + lnx) =

xx (1 + lnx)

1 + x2x

2. Find the equation of the tangent line to the curve y = x+ cosx at x = π
3 .

Solution Statements:
The slope of the tangent line is the derivative of the function.
The point we are interested in is (x0, y0) = (π3 , f(π3 )) = (π3 ,

π
3 + 1

2 ), which has x = π
3 .

We want to find the derivative f ′(π3 ) = m.
We need to define f(x) = x+ cosx.
We want the equation of the tangent line, so our answer will look like y − y0 = m(x− x0).
Our answer will look like y − π

3 −
1
2 = f ′(π3 )(x− π

3 ).

f ′(x) =
d

dx
[x+ cosx] = 1− sin[x]

f ′(
π

3
) = 1− sin

π

3
= 1−

√
3

2

The equation of the tangent line to the curve at x = π
3 is

y − π

3
− 1

2
= (1−

√
3

2
)(x− π

3
)

y = (1−
√

3

2
)(x− π

3
) +

π

3
+

1

2
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3. Find the derivative of g(t) =
sin2 t

cos t
.

Solution

g′(t) =
d

dt

[
sin2 t

cos t

]

=
cos t

d

dt
[sin2 t]− sin2 t

d

dt
[cos t]

cos2 t
quotient rule

The derivative of sin2 t will require the chain rule.

y = sin2 t decomposition: y = u2

u = sin t

d

dt
[sin2 t] =

dy

dt

=
dy

du
· du
dt

chain rule

= (2u) · (cos t)

= 2 sin t cos t

g′(t) =
cos t(2 sin t cos t)− sin2 t[− sin t]

cos2 t

=
2 sin t cos2 t+ sin3 t

cos2 t

= 2 sin t+ sin t tan2 t

4. Use the chain rule to prove that the derivative of an even function is an odd function.

Solution An even function will satisfy the equation:

f(x) = f(−x) differentiate this equation

d

dx
f(x) =

d

dx
f(−x)

f ′(x) =
d

dx
f(u), u = −x

=
d

du
f(u) · du

dx
chain rule

= f ′(u) · (−1)

= −f ′(−x)

since f ′(x) = −f ′(−x), f ′(x) is odd! Much easier than our previous proof of this result using the definition of derivative
(see Homework Section 2.9).
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5. If n is a positive integer, prove that
d

dx
[sinn x cos(nx)] = n sinn−1 x cos((n+ 1)x).

Solution

d

dx
[sinn x cos(nx)] =

d

dx
[sinn x] cos(nx) + sinn x

d

dx
[cos(nx)] product rule

We need to use the chain rule to do the two derivatives. Let’s do ’em!

y = sinn x decomposition: y = un

u = sinx

d

dx
[sinn x] =

dy

du
· du
dx

chain rule

= nun−1 · cosx

= n sinn−1 x cosx

y = cos(nx) decomposition: y = cosu

u = nx

d

dx
[cos(nx)] =

dy

du
· du
dx

chain rule

= (− sinu) · n
= −n sin(nx)

Now we substitute back:

d

dx
[sinn x cos(nx)] =

d

dx
[sinn x] cos(nx) + sinn x

d

dx
[cos(nx)] product rule

= n sinn−1 x cosx cos(nx) + sinn x(−n sin(nx))

= n
(
sinn−1 x cosx cos(nx)− sinn x sin(nx)

)
= n sinn−1 x (cosx cos(nx)− sinx sin(nx))

Use the trig identity cos a cos b− sin a sin b = cos(a+ b) to rewrite cosx cos(nx)− sinx sin(nx) = cos[(n+ 1)x] and we arrive
at the answer,

d

dx
[sinn x cos(nx)] = n sinn−1 x cos[(n+ 1)x]



Calculus I Review 3.1–3.6: Derivative Rules through Logarithmic Differentiation Page 5

6. y = e−5x cos 3x, find y′(x).

Solution

dy

dx
=

d

dx
[e−5x cos 3x]

=
d

dx
[e−5x] cos 3x+ e−5x

d

dx
[cos 3x] product rule

We must use the chain rule to do the two derivatives.

f = e−5x decomposition: f = eu

u = −5x

df

dx
=

df

du
· du
dx

chain rule

= eu · (−5)

= −5e−5x

f = cos 3x decomposition: f = cosu

u = 3x

df

dx
=

df

du
· du
dx

chain rule

= − sinu · (3)

= −3 sin 3x

Now we can substitute back:

dy

dx
=

d

dx
[e−5x cos 3x]

=
d

dx
[e−5x] cos 3x+ e−5x

d

dx
[cos 3x]

= −5e−5x cos 3x+ e−5x(−3 sin 3x)

= −e−5x(5 cos 3x+ 3 sin 3x)
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7. f(t) =
1

(t2 − 2t− 5)4
, find f ′(t).

Solution

f ′(t) =
(t2 − 2t− 5)4

d

dt
[1]− (1)

d

dt

[
(t2 − 2t− 5)4

]
(t2 − 2t− 5)8

quotient rule

= −

d

dt

[
(t2 − 2t− 5)4

]
(t2 − 2t− 5)8

constant rule

We need to use the chain rule to do this derivative:

y = (t2 − 2t− 5)4 decomposition: y = u4

u = t2 − 2t− 5

dy

dt
=

dy

du
· du
dt

chain rule

= (4u3) · (2t− 2)

= 4(2t− 2)(t2 − 2t− 5)3

Now we can substitute back:

f ′(t) = −
d
dt

[
(t2 − 2t− 5)4

]
(t2 − 2t− 5)8

= −4(2t− 2)(t2 − 2t− 5)3

(t2 − 2t− 5)8

= − 4(2t− 2)

(t2 − 2t− 5)5

Alternate solution Rewrite the function as f(t) = (t2 − 2t− 5)−4. f ′(t) =
d

dt

[
(t2 − 2t− 5)−4

]
.

We need to use the chain rule to do this derivative:

f = (t2 − 2t− 5)−4 decomposition: f = u−4

u = t2 − 2t− 5

df

dt
=

df

du
· du
dt

chain rule

= (−4u−5) · (2t− 2)

= −4(2t− 2)(t2 − 2t− 5)−5

f ′(t) =
df

dt
= − 4(2t− 2)

(t2 − 2t− 5)5
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8. For what values of x does the curve y = x+ cos 2x have horizontal tangents?

Solution Statements:
The slope of the tangent line is the derivative of the function.
We want the values of x, let’s call them x = a, for which the tangent is horizontal.
We need to solve f ′(a) = 0 for the number a.
We need to define f(x) = x+ cos 2x.
Our answer will be the numbers a.

f ′(x) =
d

dx
[x+ cos 2x]

= 1 +
d

dx
[cos 2x]

decompose: u = 2x,

= 1 +
d

dx
[cosu]

= 1 +
d

du
[cosu] · du

dx
(chain rule)

= 1 + (− sinu) · (2)

= 1− 2 sin 2x

f ′(a) = 0 −→ 1− 2 sin 2a = 0

sin 2a =
1

2

This can be solved by noting that sin(π/6) = 1/2. This is one of our special angles.
There are other solutions since sine is periodic with period 2π, sin(π/6 + 2nπ) = 1/2, n is an integer.

Therefore, 2a =
π

6
+ 2nπ, n is an integer.

Therefore, a =
π

12
+ nπ, n is an integer.

Since it is also true that sin(5π/6) = 1/2, we get more solutions:

2a =
5π

6
+ 2nπ, n is an integer

a =
5π

12
+ nπ.

9. y = sin(lnx). Find y′.

Solution Here, y is a function of x, so y′ = dy/dx.

y = sin(ex) decomposition: y = sinu

u = lnx

dy

dx
=

dy

du
· du
dx

chain rule

= (cosu) ·
(

1

x

)
=

cos(lnx)

x
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10. The displacement of a particle on a vibrating string is given by s = A cos(ωt + δ). Find the velocity of the particle
at time t. When is the velocity zero?

Solution Statements:
The velocity is the derivative of the position function.
The position function is given by s = f(t).
The velocity will be v(t) = f ′(t).
We will need to use the chain rule to calculate the derivative.
Once we have the velocity, we can determine for what time it is zero by solving v(t) = 0 for t.

f(t) = A cos(ωt+ δ) decomposition: f = A cosh

h = ωt+ δ

v(t) = f ′(t) =
df

dt

=
df

dh
· dh
dt

chain rule

=
d

dh
[A cosh]

d

dt
[ωt+ δ]

= A(− sinh)(ω)

= −Aω sin(ωt+ δ)

The velocity is zero when

−Aω sin(ωt+ δ) = 0

which occurs when ωt+ δ = nπ, n an integer, so t = (nπ − δ)/ω.

11. Find the x-coordinates in (−π, π) for which the curve y = sin(2x) − 2 sinx has a horizontal tangent line. Solution
requires use of Mathematica to solve an equation.

Solution Statements:
Slope of the tangent line is the derivative of the function.
Our function will be f(x) = sin(2x)− 2 sinx.
We will have to use the chain rule to determine the derivative (sin 2x).
If the tangent line is horizontal, then the slope is zero.
We want to find all the points a which satisfy f ′(a) = 0.

f ′(x) =
d

dx
[sin(2x)− 2 sinx]

=
d

dx
[sin(2x)]− 2

d

dx
[sinx]

d

dx
[sin(2x)] =

d

dx
[sinu], u = 2x

=
d

du
[sinu]

du

dx
chain rule

= cosu · (2)

= 2 cos(2x)

f ′(x) = 2 cos(2x)− 2 cosx

Use Mathematica to solve for a in f ′(a) = 0: Solve[2 Cos[2*a] - 2 Cos[a] == 0, x]

And we find that a = 0,−2π/3, 2π/3.
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12. Given f(x) =

√
x2 + 1

secx sinx+ e2x
, find f ′(x).

Solution

f ′(x) =
d

dx

[ √
x2 + 1

secx sinx+ e2x

]

=
(secx sinx+ e2x)

d

dx
[
√
x2 + 1]− (

√
x2 + 1)

d

dx
[secx sinx+ e2x]

(secx sinx+ e2x)2
(quotient rule) (1)

Let’s pause to work out the two derivatives as an aside.

d

dx
[
√
x2 + 1] =

d

dx
[
√
u], u = x2 + 1

=
d

du
[
√
u] · du

dx
, (chain rule)

=
1

2
u1/2−1 · (2x),

=
1

2
√
u
· (2x),

=
x√

x2 + 1
. (2)

d

dx
[secx sinx+ e2x] =

d

dx
[secx sinx] +

d

dx
[e2x] (sum rule)

=
d

dx
[secx] sinx+ secx

d

dx
[sinx] +

d

dx
[eu], u = 2x

(first term: product rule; second term: set up for chain rule)

= [secx tanx] sinx+ secx[cosx] +
d

du
[eu] · du

dx
, (chain rule)

= [
1

cosx
· sinx

cosx
] sinx+ secx[

1

secx
] + [eu] · (2), (simplify)

= tan2 x+ 1 + 2e2x. (3)

Now, we can substitute Equations (2) and (3) into Equation (1).

f ′(x) =
(secx sinx+ e2x)

d

dx
[
√
x2 + 1]− (

√
x2 + 1)

d

dx
[secx sinx+ e2x]

(secx sinx+ e2x)2

=
(secx sinx+ e2x)

(
x√
x2+1

)
− (
√
x2 + 1)[tan2 x+ 1 + 2e2x]

(secx sinx+ e2x)2

If we need to, we can simplify this. However, we don’t have to if all we wanted was the derivative.

If we want to compare with what Mathematica gives us, we need to simplify a bit. Use the following: tan2 x+ 1 = sec2 x,
and secx sinx = tanx:

f ′(x) =
(tanx+ e2x)

(
x√
x2+1

)
− (
√
x2 + 1)[sec2 x+ 2e2x]

(tanx+ e2x)2

=
(tanx+ e2x)

(
x√
x2+1

)
(tanx+ e2x)2

− (
√
x2 + 1)[sec2 x+ 2e2x]

(tanx+ e2x)2

=
x√

x2 + 1(tanx+ e2x)
− (
√
x2 + 1)(sec2 x+ 2e2x)

(tanx+ e2x)2
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13. Given f(x) = cos(cos(cos(cosx))), find f ′(x).

Solution This is a test of our chain rule abilities. Let’s decompose!

s = cosw, w = cos v, v = cosu, u = cosx.

Check we did the decomposition correctly:

(s ◦ w ◦ v ◦ u)(x) = s
(
w
(
v
(
u(x)

)))
= s

(
w
(
v
(

cosx
)))

= s
(
w
(

cos
(

cosx
)))

= s (cos(cos(cosx)))

= cos(cos(cos(cosx)))

= f(x)

Therefore, we can use the chain rule as follows.

f ′(x) =
ds

dw
· dw
dv
· dv
du
· du
dx

=
d

dw
[cosw] · d

dv
[cos v] · d

du
[cosu] · d

dx
[cosx]

= [− sinw] · [− sin v] · [− sinu] · [− sinx]

= [sin(cos v)] · [sin(cosu)] · [sin cosx] · [sinx]

= [sin(cos(cosu))] · [sin(cos(cosx))] · [sin(cosx)] · [sinx]

= [sin(cos(cos(cosx)))] · [sin(cos(cosx))] · [sin(cosx)] · [sinx]

14. Where does the normal line to the ellipse x2 − xy + y2 = 3 at the point (−1, 1) intersect the ellipse a second time?

Solution To find the normal line, we will need to first find the slope of the tangent line. That means we need the derivative,
and since this is an implicit function, we want to implicitly differentiate.

d

dx
[x2 − xy + y2] =

d

dx
[3]

d

dx
[x2]− d

dx
[xy] +

d

dx
[y2] = 0

2x−
(
x
d

dx
[y] + y

d

dx
[x]
)

+
d

dy
[y2]

dy

dx
= 0

2x−
(
x
dy

dx
+ y
)

+ 2y
dy

dx
= 0

2x− xdy
dx
− y + 2y

dy

dx
= 0

dy

dx

(
− x+ 2y

)
= y − 2x

dy

dx
=
y − 2x

2y − x

The slope of the tangent line at (−1, 1) is therefore
dy

dx

∣∣∣
(−1,1)

=
1− 2(−1)

2(1)− (−1)
= 1.

The slope of the normal line at (−1, 1) is therefore m = −1 (perpendicular lines have slopes that are negative reciprocals).

The equation of the normal line is

y − y0 = m(x− x0)

y − 1 = −1(x+ 1)

y = −x
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Two find where this intersects the ellipse, solve the system of equations

x2 − xy + y2 = 3

y = −x

for (x, y). Take the second equation and substitute it into the first:

x2 − x(−x) + (−x)2 = 3

x2 + x2 + x2 = 3

x2 = 1

x = +1 or − 1

If x = −1, we get y = −x = 1, so the point (−1, 1).

If x = +1, we get y = −x = −1, so the point (1,−1).

You can check this by graphing in Mathematica:

p1 = ContourPlot[x^2 - x y + y^2 == 3, {x, -5, 5}, {y, -5, 5}];

p2 = Plot[-x, {x, -5, 5}];

Show[p1, p2, AspectRatio -> 1]

15. Suppose f is a one-to-one differentiable function and its inverse f−1 is also differentiable. Use implicit differentiation
to show

d

dx
[f−1(x)] =

1

f ′(f−1(x))

Solution Start by writing down one of the cancelation equations for inverse functions. Then implicitly differentiate.

f(f−1(x)) = x

d

dx
[f(f−1(x))] =

d

dx
[x]

d

dx
[f(u)] = 1 let u = f−1(x)

d

du
[f(u)]

du

dx
= 1 use the chain rule

f ′(u)
du

dx
= 1

du

dx
=

1

f ′(u)
put u back in

d

dx
[f−1(x)] =

1

f ′(f−1(x))
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16. If ln(xy) = tan−1 x, find y′ =
dy

dx
and y′′ =

d2y

dx2
=

d

dx

[
dy

dx

]
.

Solution Since the function is implicitly defined, we must do this with implicit differentiation.

d

dx
[ln(xy)] =

d

dx
[tan−1 x]

d

dx
[xy]

xy
=

1

1 + x2

y
d

dx
[x] + x

d

dx
[y]

xy
=

1

1 + x2

y + x
dy

dx
xy

=
1

1 + x2

dy

dx
=

y

1 + x2
− y

x

d2y

dx2
=

d

dx

[
d

dx

]
=

d

dx

[
y

1 + x2
− y

x

]
=

d

dx

[
y

1 + x2

]
− d

dx

[y
x

]

=
(1 + x2)

d

dx
[y]− y d

dx
[1 + x2]

(1 + x2)2
−
x
d

dx
[y]− y d

dx
[x]

x2

=
(1 + x2)

dy

dx
− y[2x]

(1 + x2)2
−
x
dy

dx
− y

x2

=

(1 + x2)

(
y

1 + x2
− y

x

)
− 2xy

(1 + x2)2
−
x

(
y

1 + x2
− y

x

)
− y

x2

You could also simplify dy/dx and instead write

dy

dx
= y

(
1

1 + x2
− 1

x

)
d2y

dx2
=

d

dx

[
y

(
1

1 + x2
− 1

x

)]
=

d

dx
[y]

(
1

1 + x2
− 1

x

)
+ y

d

dx

[(
1

1 + x2
− 1

x

)]

=
dy

dx

(
1

1 + x2
− 1

x

)
+ y

 (1 + x2)
d

dx
[1]− 1

d

dx
[1 + x2]

(1 + x2)2
−
x
d

dx
[1]− 1

d

dx
[x]

x2


=

dy

dx

(
1

1 + x2
− 1

x

)
+ y

(
−2x

(1 + x2)2
− −1

x2

)
= y

(
1

1 + x2
− 1

x

)2

+ y

(
−2x

(1 + x2)2
+

1

x2

)
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17. Find y′ given y = xcos x.

Solution (logarithmic differentiation since base and exponent depend on x)

ln y = ln(xcos x)

ln y = cosx ln(x)

d

dx
[ln y] =

d

dx
[cosx lnx]

d

dy
[ln y]

dy

dx
= cosx

d

dx
[lnx] + lnx

d

dx
[cosx]

1

y

dy

dx
= cosx · 1

x
+ lnx(− sinx)

dy

dx
= y(

cosx

x
− sinx lnx)

= xcos x(
cosx

x
− sinx lnx)

18. Find the equation of the tangent line to the curve y = f(x) = x2 cos3 x+ 12 for any one point on the curve where the
tangent line is horizontal.

Solution Let’s get the derivative!

f ′(x) =
d

dx
[x2 cos3 x+ 12] =

d

dx
[x2 cos3 x] +

d

dx
[12] sum rule

=
d

dx
[x2] cos3 x+ x2

d

dx
[cos3 x] + 0 product rule

= 2x cos3 x+ x2
d

dx
[u3], u = cosx power rule, set up second term for chain rule

= 2x cos3 x+ x2
d

du
[u3] · du

dx
, chain rule

= 2x cos3 x+ x2
d

du
[u3] · d

dx
[cosx],

= 2x cos3 x+ x2
(
3u2
)

(− sinx),

= 2x cos3 x+ x2
(
3 cos2 x

)
(− sinx),

= 2x cos3 x− 3x2 sinx cos2 x,

To get the equation of the tangent line, we will need to find y − y0 = m(x− x0), where (x0, y0) is a point on the tangent
line and m is the slope of the tangent line. The slope of the tangent line will be the derivative of the function evaluated at
that point, so m = f ′(x0). We need to solve the equation

f ′(x) = 2x cos3 x− 3x2 sinx cos2 x = 0

for x. One solution is x = 0; you could also use Mathematica to get all the solutions:

f[x_] = x^2 Cos[x]^3 + 12

Solve[f’[x] == 0, x]

Possible solutions are x = 0,−π/2, π/2. Let’s choose x = 0. Therefore, x0 = 0, and since y0 = f(0) = 12, the equation of
the tangent line is

y − y0 = m(x− x0)

y − 12 = 0(x− 0)

y = 12

The values of x = ±π/2 also have tangent line y = 12.


