Ezamples from Sections 5.4

Indefinite Integrals
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Example A particle moves along a line so that v(t) = 3t — 5 m/s. Positive displacement is measured to the

right.
a) Find the displacement of

the particle during the time period 0 < ¢ < 3.

b) Find the distance traveled during this time period.

displacement = s(3) — s(0)

Il
S—
)

—~
(O8]
pég

|
ot
S~—
QL
Py

=
s - (XL -s0)
3

£

The particle moved 3/2 m to the left (because of the minus sign).

distance traveled =

3
/wwwt
0
3
/ 13t — 5| dt
0

We need to work out the absolute value:
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The total distance traveled by the particle is 41/6 m.
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Example Find the distance traveled by a particle during the time from ¢ = 0 to ¢ = 10 if the particle moves

with the acceleration a(t) = ¢t + 4 and the initial velocity is v(0) = 5.

The velocity will be given by the integral of the acceleration:

v(t) = /a(t) dt+c
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t
v(t):§—|—4t+c

Use the condition to determine the constant c:

v(0)=0+0+4+c=5

t2
u(t) = 5+4t+5 m/s

The distance traveled is given by:

2
2+4t+5‘ dt
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The integrand is positive in the region 0 < ¢t < 10, so the absolute value can be replaced with the function:

t2 2
2+4t+5‘=2+4t+5

Aside: You can show this by working out the roots of the quadratic and seeing that they are both less than

Zero.
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The distance traveled by the particle is 1250/3 m.



