11.7 Strategy for Testing Series

Solutions online. Note the Question numbers are most likely out of date.

Are the following series absolutely convergent, conditionally convergent, or divergent?

Example 11.7.1
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^2 + n}$$

Example 11.7.4 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n-1}{n^2 + n}$
Example 11.7.6 $\sum_{n=1}^{\infty} \left(\frac{3n}{1+8n}\right)^n$
Example 11.7.9 $\sum_{n=1}^{\infty} \frac{n}{e^n}$
Example 11.7.14 $\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$
Example 11.7.17 $\sum_{n=1}^{\infty} \frac{3^n}{5^n + n}$
Example 11.7.23 $\sum_{n=1}^{\infty} (-1)^n 2^{1/n}$
Example 11.7.25 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$
Example 11.7.31 $\sum_{n=1}^{\infty} \frac{2^n}{(2n+1)!}$
Example 11.7.30 $\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$

Practice Test Question

Solutions online. Study more than just these questions! There can be other types of questions on the test.

- **1.** The *n*th partial sum of a series $\sum_{n=1}^{\infty} a_n$ is $s_n = \frac{n-1}{n+1}$. Find a_n . Find $\sum a_n$.
- 2. Draw diagrams and clearly explain the Remainder Estimate for the Integral Test:

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_n^{\infty} f(x) \, dx.$$

(Make sure you include the details of the integral test itself in your answer)

- 3. Test the series $\sum_{n=1}^{\infty} \frac{1}{2^n 1}$ for convergence or divergence using the limit comparison test.
- 4. Is $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ absolutely convergent, conditionally convergent, or divergent? Explain.
- 5. Test the series $\sum_{n=1}^{\infty} e^{-n} n!$ for convergence or divergence using the ratio test.
- 6. Find the exact sum of $\sum_{n=4}^{\infty} \frac{1}{(n-3)(n-1)}$ using partial fractions.
- 7. If the *n*th partial sum of a series $\sum a_n$ is given by $s_n = 3 ne^{-n}$, find $\sum a_n$.
- 8. Show that series $\sum_{n=1}^{\infty} \frac{n^2}{6n^2+4}$ diverges.
- **9.** Is the series $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$ absolutely convergent, conditionally convergent, or divergent?