11.7 Strategy for Testing Series

Solutions online. Note the Question numbers are most likely out of date.
Are the following series absolutely convergent, conditionally convergent, or divergent?
Example 11.7.1 $\sum_{n=1}^{\infty} \frac{n^{2}-1}{n^{2}+n}$
Example 11.7.4 $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n-1}{n^{2}+n}$
Example 11.7.6 $\sum_{n=1}^{\infty}\left(\frac{3 n}{1+8 n}\right)^{n}$
Example 11.7.9 $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$
Example 11.7.14 $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}+1}$
Example 11.7.17 $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}+n}$
Example 11.7.23 $\sum_{n=1}^{\infty}(-1)^{n} 2^{1 / n}$
Example 11.7.25 $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{\sqrt{n}}$
Example 11.7.31 $\sum_{n=1}^{\infty} \frac{2^{n}}{(2 n+1)!}$
Example 11.7.30 $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{2}}$

Practice Test Question

Solutions online. Study more than just these questions! There can be other types of questions on the test.

1. The nth partial sum of a series $\sum_{n=1}^{\infty} a_{n}$ is $s_{n}=\frac{n-1}{n+1}$. Find a_{n}. Find $\sum a_{n}$.
2. Draw diagrams and clearly explain the Remainder Estimate for the Integral Test:

$$
\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

(Make sure you include the details of the integral test itself in your answer)
3. Test the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ for convergence or divergence using the limit comparison test.
4. Is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ absolutely convergent, conditionally convergent, or divergent? Explain.
5. Test the series $\sum_{n=1}^{\infty} e^{-n} n$! for convergence or divergence using the ratio test.
6. Find the exact sum of $\sum_{n=4}^{\infty} \frac{1}{(n-3)(n-1)}$ using partial fractions.
7. If the nth partial sum of a series $\sum a_{n}$ is given by $s_{n}=3-n e^{-n}$, find $\sum a_{n}$.
8. Show that series $\sum_{n=1}^{\infty} \frac{n^{2}}{6 n^{2}+4}$ diverges.
9. Is the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n}$ absolutely convergent, conditionally convergent, or divergent?

