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Example Find the Taylor series of f(x) = e™* about x = 0.
The center of our Taylor series will be @ = 0. This means it could be called a MacLaurin series.

Let’s construct a table which will give us the derivatives, and enable us to calculate f() (a). We will want the general
form, so we should try and write things in ways in which the pattern becomes evident.

n| 1@ | f7@) = f0)
0 e ” 1

1 —e 7 —1

2 +e™7 +1

3 —e * —1

n | (=1)"e”" (="

So we can see that the general form is (™ (0) = (—1), since if we take an even derivative we get a positive number, and
if we take an odd derivative the number is negative.

fm) ="

Cn = =
n! n!

The Taylor series is given by

(o) e}
e :EO py m:EO " |z| < R.

Now we want to find the radius of convergence, R. We can do this using the ratio test, where a,, = ——z".

(—1)ntigntl n!
(n+1)!  (=1)ma”

n!
(n+1)!

an+1
Qn

lim

n—oo

lim ’

n—oo

= lim
n—oo

T

= |z| lim

= |z|-0=0<1 forall z.

So the series is absolutely convergent for all values of x, which means R = oc.

e’ = i (_l)nsc” x € (—00,00)
- 0 n! ) ) *

This can be checked in Mathematica using;:

flx_] = Expl[-x]
Series[f[x], {x, 0, 5}]
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Figure 1: Plots of f(z)
2

-n" . T
Z(n') x :17x+?(blue).

e~ * (red) and the Taylor polynomial approximation of order 2 centered at a = 2, Th(z) =

v |l

n=0

Example Find the Taylor series of f(x) = e™* about x = 3.
The center of our Taylor series will be a = 3.

Let’s construct a table which will give us the derivatives, and enable us to calculate f(™)(a).

n| 1@ | f0) = 1)
0 e " le=3

1 —e * —le 3

2 +e™* +1le3

3 —e * —le 3

n | (=1)"e® (—1)"e™3

So we can see that the general form is £ (3) = (—1)"e

M0 (e

n! e3n!

Cn

The Taylor series is given by

| 3n!
n! "0 e’n:

> £(n) = (=)™
6_95:Zf (O)(;v—a)":z( L (x—3)", |z—3|<R.
n=0

Now we want to find the radius of convergence, R. We can do this using the ratio test, where
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G, 3n! (I 3)
-1 n+1 _ n+1 3 !
lim |2t lim ( )3 (z—3) . en
n—oc | Qp n—o0 e3(n+1)! (—~1)n(x — 3)n
n!
= 1 _
A @ = 3)
= |z —3| lim

n—oon + 1
= |z—3/-0=0<1 forallz.

So the series is absolutely convergent for all values of z, which means R = oc.

et = Z (;32)'71 (x—3)", z € (—o0,00).
n=0 :

This can be checked in Mathematica using:

flx_] = Expl[-x]
Series[f[x], {x, 3, 5}]

Figure 2: Plots of f(z) = e¢™* (red) and the two Taylor polynomial approximations of order 2, one centered at a = 0
(blue) and the other centered at a = 3 (green).

Example 11.10.12 Find the Taylor series of f(z) = Inx about « = 2.
The center of our Taylor series will be a = 2.

Let’s construct a table which will give us the derivatives, and enable us to calculate £ (a).
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n £ () F™(a) = £ (2)

0 Inz In2

1 z! 1/2

2 —z?2 —1/22

3 +2273 +2/23

4 —2.3z74 —-2.3/2*

_1\n+1 _ i _1\n+1 _ i

n#£0 | (=1)""(n 1)!33” (=) (n 1)!2n

So we can see that the general form is f("(2) = (=1)"t1(n — 1)
we will have to pull the n = 0 term out of our sum.

F9@) (=)0 - 1)1k wH L

(=1

Cn = = = 2 , 1 7& 0;
n! n! n
The Taylor series is given by
_ o f(2) n_ o~ (-
lnthlQJr?Z:1 py (x—2) f1n2+; T (x —

Now we want to find the radius of convergence, R. We can do this using the ratio test, where a,,

1L
5%

if n # 0, and f(©(2) = In2. Since the form changes,

co=1In2

9", |z —2| <R.

1 n+2 ) n+1 on
lim |2+t lim ()" —2) . r
n—oo | ap n—o0 27+l (n+1) (=)ntl(x —2)"
_ : _ 9\n+tl-ngn—-n—1 n
= gl
|z —2| .. n
= lim
2 n-oon+1
|z — 2| 1
= im
2 nocol+41/n
|z — 2| 1 |z — 2|
= . = 1
5 1+0 2

So the series is absolutely convergent for |z — 2| < 2 which means R = 2.

_9)n
2nn (@ =2)",

-1 n+1
(=1 |z —2| < 2.
n

Inx = ln2+i
n=1

This can be checked in Mathematica using;:

f[x_] = Loglx]
Series[f[x], {x, 2, 5}]
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Figure 3: Plots of f(z) = Inxz (red) and the Taylor polynomial approximation of order 4 centered at a = 2, Ty(z) =

n+1

2+ %(z —2)" (blue).
n=1

Example 11.11.2 Find the Taylor series of f(z) = 1/(1 + z)* about z = 0.

The center of our Taylor series will be a = 0.

Let’s construct a table which will give us the derivatives, and enable us to calculate f(™(a).

So we can see that the general form is f(™(0) = (—1)"

S0 _ ()

6

Cp = =
n! n!

The Taylor series is given by

n f(n)(x) f(n)(a) _ f(n)(())
0 (1+Z‘)_4 I
1 _4(1+$)_5 _4
2 4-5(1+2)76 445
3 —4-5-6(1+2)"7 456
4 4-5-6-7(1+z)8 4567
n | ()" (4 3) (1 + ) (_Dn(ng?))'
(n+3)!
e
= (—1)" (Tl+1)(n—6|—2)(n—|—3).
i(_l)n(n+1)(n+2)(n+3)xn ol <&

1 M0
(1+z)4_Z a0

n=0

6

n=0

)
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Now we want to find the radius of convergence, R. We can do this using the ratio test, where

(ntD(n+2)(n+3) ,

an = (—1)" 5 x".
| o |[(CD M (04 8) (0t 4 6
im = lim .
4
= |z| lim (n+4)
n—oo | (n+1)
= |z| lim (1+4/n)
1+0
= ol g =l <1

So the series is absolutely convergent for |z| < 1 which means R = 1.

1 i 72(_1)n(n+1)(n+2)(n+3) n

R 6

flx_] = 1/(1+x)"4
Series[f[x], {x, 0, 5}]

2", |z < 1.
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Figure 4: Plots of f(z) = 1/(1 + z)* (red) and the Taylor polynomial approximation centered at a = 0 of order 2 (blue),

and 100 (green).

Example 11.10.35 Find the MacLaurin series for f(z) = In(1 + z) and use it to calculate In 1.1 to five decimals.

The center of our Taylor series will be a = 0.

Let’s construct a table which will give us the derivatives, and enable us to calculate f(™)(a).
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n [ () f™(a) = f(0)
0 In(1 + z) Inl=
1 (1+z)7! 1
2 ~(1+a2)2 —1
3 +2(1+ )73 +2
4 ~2-3(1+x)"* -2-3
n _1\n+1 n— | 1 _1\n+1 n— |
#0 | (=1)""( 1)~7(1+$)n (=) (n—1)!

So we can see that the general form is f(™(0) = (=1)"*!(n — 1) if n # 0, and f(®)(0) = 0. Since the form changes, we
will have to pull the n = 0 term out of our sum.

(n) 1\yn+1 o _1\n+1

The Taylor series is given by

n+1

> f(n) o (.
In(1+z) =0+ / n'<0) (@—0)"=>" %x" lz| < R.
n=1 ' n=1

_1 n+1
Now we want to find the radius of convergence, R. We can do this using the ratio test, where a,, = Lx"
n

(71)n+2xn+1 n
CESVEN S

n+l—n . n
n+1

Ap+1
Qn

lim

n—oo

n—oo

lim ’

= lim
n—oo

X

= 1.
| lim ey

1
— —_— = <1
2l 155 = lel

So the series is absolutely convergent for || < 1 which means R = 1.

> —1)nt1
In(l+2) = E L33", |z < 1.
n
n=1

We can use this to get an estimate for In1.1:

0 -1 n+1
n1l=Ikn1+01) = > L(O.l)"
n
n=1

0.1 — 0.005 + 0.0003333 — 0.000025 +- 0.000002 — - - -
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Since the series is alternating, we can estimate the error in truncating by the first term dropped, |R,| < |an+1|. We can
therefore write

In1.1 = 0.1 -0.005+ 0.0003333 — 0.000025 + 0.000002 — - - -
0.1 — 0.005 + 0.0003333 — 0.000025, |error| < 0.000002
0.09531, |error| < 0.000002

2

2

I used the Mathematica commands:

aln_.] = (-1D"(a + 1)/n (0.1)"n
al1]

al[2]

a[3]

al4]

a[5]

a[1] + a[2] + a[3] + al4]

and to check the answer I used

flx_] = Logll + x]
glx_1 = Normall[Series[f[x], {x, 0, 5}]]
Log[1.1]

Example 11.10.44 Use series to approximate the definite integral to within an |error| < 0.001

1/2 )
/ 22 da.
0

We need to expand the integrand as a series. However, it is complicated looking; we might not be able to find a pattern.

Let’s use Mathematica to help us get the derivatives we need to form the Taylor series. The problem doesn’t tell us what
to use as the center; I choose to use a = 0, although other values for the center will work.

flx_] = x"2 Exp[-x~2]
Simplify[£’ [x]]
Simplify[f’° [x]]
Simplify[£’’° [x]]
Simplify[£’’°’ [x]]

The derivatives look kind of complicated. Here they are:



Ezxamples from Section 11.10: Calculating Taylor and MacLaurin Series Page 9

FO(z) = 207" (1 — 522 + 22%)

fO(x) = —467:”236(6 — 922 4 22%)

FD(2) = 4" (—6 + 3922 — 282" + 429)
I evaluated them at x = a = 0 and found:

Simplify[f[0]]
Simplify (£’ [0]]
Simplify[£’’[0]]
Simplify[£f’’° [0]]
Simplify[£’’°[0]]

flx)=0
@) =0
A (x) =2
fP () =0
W (z) = —24

Wow! Lot’s of zeros! So we have for our Taylor series

2 24
f(m):xQe*ﬁ~O+0+5x2+0—1x4:x2—x4

This simplified version looks like there might be a simple pattern after all. Let’s get some more terms and see if we can
figure it out.

Simplify[£’’>2°[0]1/5!
Simplify[£’’°°’°[0]]/6!
Simplify[£°2’°22°[0]]1/7!
Simplify[£f’>°°°°2°°[0]]/8!

We find ¢5 =0, ¢g = 1/2, ¢; =0, and ¢g = —1/6. We now have
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Our pattern is

n=2

Let’s get the radius of convergence using the ratio test: where a,, =

Ap41

lim lim
n—00 | Qp n—oo| (n—1)!
_ hm x2n+272n .
n—oo
= |2?| lim
n—oo 1, —

(—1)ntig2n . (n—2)!

(71)nx2n72

1
n—1

= |2%-0=0<1 forallz.

The radius of convergence is R = co. We have shown that

2 —a? - -1)"
flz) =ae™™ = Z ( _)2)!90

n=2 (TL

Now we can do the integral, which will work since the integration limits are inside |z| < oo:

1/2 ) 1/2 o
e dx = /
| D>

o0

- ¥

n=

oo

9]
n=2

2

= 2

n=

n

2

2

n

(=D"

2n—2

x| < o0

(71)71 I2n72 dx
7 (n—2)!

1/2
/ x2n72 dx
0

(n—2)!

(_l)n IQTL—I 1/2

(n—=2)! 2n -1,

(_l)n ((1/2)2"_1 B 02n—1
(n—2)! 2n —1 2n—1

N (="
B 2:: (n —2)!(2n — 1)22n-1

)

Since the series is alternating, we can estimate the error in truncating by the first term dropped, |R,| < |a,+1|. Here is

some more Mathematica help:

aln_.] = (-1)"n/(n - 2)!/(2n - 1)/2.0°(2n - 1)

al2]
al3]
al4]
a[5]
al2] + a[3] + a[4]
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1/2 2 —z? _ > (-1)”
/0 rle de = Z (n—2)!(2n — 1)227—1

n=2

N

0.0416667 — 0.00625 + 0.000558036, |error| < 0.000036169.
0.03597, |error| < 0.00004.

2

There are other ways to go about solving this problem. This was the direct, brute force method of getting a Taylor series
for the integrand.

We might also have used the Taylorzseries for e¥, and modified it to get the series for e‘wz, and then multiplied that by
z? to get the Taylor series for x2e ™% .



