The center of our Taylor series will be a = 0. This means it could be called a MacLaurin series.

Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$. We will want the general form, so we should try and write things in ways in which the pattern becomes evident.

n	$f^{(n)}(x)$	$f^{(n)}(a) = f^{(n)}(0)$
0	e^{-x}	1
1	$-e^{-x}$	-1
2	$+e^{-x}$	+1
3	$-e^{-x}$	-1
÷	•	
n	$(-1)^n e^{-x}$	$(-1)^n$

So we can see that the general form is $f^{(n)}(0) = (-1)^n$, since if we take an even derivative we get a positive number, and if we take an odd derivative the number is negative.

$$c_n = \frac{f^{(n)}(0)}{n!} = \frac{(-1)^n}{n!}$$

The Taylor series is given by

$$e^{-x} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n, \quad |x| < R.$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where $a_n = \frac{(-1)^n}{n!} x^n$.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{n+1}}{(n+1)!} \cdot \frac{n!}{(-1)^n x^n} \right|$$
$$= \lim_{n \to \infty} \left| x \frac{n!}{(n+1)!} \right|$$
$$= |x| \lim_{n \to \infty} \frac{1}{n+1}$$
$$= |x| \cdot 0 = 0 < 1 \text{ for all } x.$$

So the series is absolutely convergent for all values of x, which means $R = \infty$.

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n, \ x \in (-\infty, \infty).$$

This can be checked in *Mathematica* using:

f[x_] = Exp[-x]
Series[f[x], {x, 0, 5}]

Figure 1: Plots of $f(x) = e^{-x}$ (green) and the Taylor polynomial approximation of order 2 centered at a = 2, $T_2(x) = \sum_{n=0}^{2} \frac{(-1)^n}{n!} x^n = 1 - x + \frac{x^2}{2}$ (red).

Example Find the Taylor series of $f(x) = e^{-x}$ about x = 3.

The center of our Taylor series will be a = 3.

Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$.

n	$f^{(n)}(x)$	$f^{(n)}(a) = f^{(n)}(3)$
0	e^{-x}	$1e^{-3}$
1	$-e^{-x}$	$-1e^{-3}$
2	$+e^{-x}$	$+1e^{-3}$
3	$-e^{-x}$	$-1e^{-3}$
÷	:	
n	$(-1)^n e^{-x}$	$(-1)^n e^{-3}$

So we can see that the general form is $f^{(n)}(3) = (-1)^n e^{-3}$.

$$c_n = \frac{f^{(n)}(0)}{n!} = \frac{(-1)^n}{e^3 n!}$$

The Taylor series is given by

$$e^{-x} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (x-a)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{e^3 n!} (x-3)^n, \quad |x-3| < R.$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where

$$a_n = \frac{(-1)^n}{e^3 n!} (x-3)^n.$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} (x-3)^{n+1}}{e^3 (n+1)!} \cdot \frac{e^3 n!}{(-1)^n (x-3)^n} \right|$$

$$= \lim_{n \to \infty} \left| (x-3) \frac{n!}{(n+1)!} \right|$$

$$= |x-3| \lim_{n \to \infty} \frac{1}{n+1}$$

$$= |x-3| \cdot 0 = 0 < 1 \text{ for all } x.$$

So the series is absolutely convergent for all values of x, which means $R = \infty$.

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{e^3 n!} (x-3)^n, \ x \in (-\infty,\infty).$$

This can be checked in *Mathematica* using:

f[x_] = Exp[-x]
Series[f[x], {x, 3, 5}]

Figure 2: Plots of $f(x) = e^{-x}$ (green) and the two Taylor polynomial approximations of order 2, one centered at a = 0 (red) and the other centered at a = 3 (blue).

Example 11.10.12 Find the Taylor series of $f(x) = \ln x$ about x = 2.

The center of our Taylor series will be a = 2.

Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$.

n	$f^{(n)}(x)$	$f^{(n)}(a) = f^{(n)}(2)$
0	$\ln x$	$\ln 2$
1	x^{-1}	1/2
2	$-x^{-2}$	$-1/2^2$
3	$+2x^{-3}$	$+2/2^{3}$
4	$-2 \cdot 3x^{-4}$	$-2 \cdot 3/2^4$
÷		
$n \neq 0$	$(-1)^{n+1}(n-1)!\frac{1}{x^n}$	$(-1)^{n+1}(n-1)!\frac{1}{2^n}$

So we can see that the general form is $f^{(n)}(2) = (-1)^{n+1}(n-1)!\frac{1}{2^n}$ if $n \neq 0$, and $f^{(0)}(2) = \ln 2$. Since the form changes, we will have to pull the n = 0 term out of our sum.

$$c_n = \frac{f^{(n)}(2)}{n!} = \frac{(-1)^{n+1}(n-1)!\frac{1}{2^n}}{n!} = \frac{(-1)^{n+1}\frac{1}{2^n}}{n}, \ n \neq 0; \quad c_0 = \ln 2$$

The Taylor series is given by

$$\ln x = \ln 2 + \sum_{n=1}^{\infty} \frac{f^{(n)}(2)}{n!} (x-2)^n = \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n n} (x-2)^n, \quad |x-2| < R.$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where $a_n = \frac{(-1)^{n+1}}{2^n n} (x-2)^n$.

$$\begin{split} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \left| \frac{(-1)^{n+2} (x-2)^{n+1}}{2^{n+1} (n+1)} \cdot \frac{2^n n}{(-1)^{n+1} (x-2)^n} \right| \\ &= \lim_{n \to \infty} \left| (x-2)^{n+1-n} 2^{n-n-1} \cdot \frac{n}{n+1} \right| \\ &= \frac{|x-2|}{2} \lim_{n \to \infty} \frac{n}{n+1} \\ &= \frac{|x-2|}{2} \lim_{n \to \infty} \frac{1}{1+1/n} \\ &= \frac{|x-2|}{2} \cdot \frac{1}{1+0} = \frac{|x-2|}{2} < 1 \end{split}$$

So the series is absolutely convergent for |x - 2| < 2 which means R = 2.

$$\ln x = \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n n} (x-2)^n, \quad |x-2| < 2.$$

This can be checked in *Mathematica* using:

f[x_] = Log[x] Series[f[x], {x, 0, 5}]

Figure 3: Plots of $f(x) = \ln x$ (green) and the Taylor polynomial approximation of order 4 centered at a = 2, $T_4(x) = \ln 2 + \sum_{n=1}^{4} \frac{(-1)^{n+1}}{2^n n} (x-2)^n$ (red).

Example 11.11.2 Find the Taylor series of $f(x) = 1/(1+x)^4$ about x = 0.

The center of our Taylor series will be a = 0.

Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$.

n	$f^{(n)}(x)$	$f^{(n)}(a) = f^{(n)}(0)$
0	$(1+x)^{-4}$	1
1	$-4(1+x)^{-5}$	-4
2	$4 \cdot 5 (1+x)^{-6}$	$+4 \cdot 5$
3	$-4 \cdot 5 \cdot 6 (1+x)^{-7}$	$-4 \cdot 5 \cdot 6$
4	$4 \cdot 5 \cdot 6 \cdot 7 (1+x)^{-8}$	$+4 \cdot 5 \cdot 6 \cdot 7$
÷	:	÷
n	$(-1)^n \frac{1}{2 \cdot 3} (n+3)! (1+x)^{n+4}$	$(-1)^n \frac{(n+3)!}{6}$

So we can see that the general form is $f^{(n)}(0) = (-1)^n \frac{(n+3)!}{6}$.

$$c_n = \frac{f^{(n)}(0)}{n!} = \frac{(-1)^n \frac{(n+3)!}{6}}{n!} = (-1)^n \frac{(n+1)(n+2)(n+3)}{6}$$

The Taylor series is given by

$$\frac{1}{(1+x)^4} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} (-1)^n \frac{(n+1)(n+2)(n+3)}{6} x^n, \quad |x| < R.$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where

$$\begin{split} a_n &= (-1)^n \frac{(n+1)(n+2)(n+3)}{6} x^n.\\ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \left| \frac{(-1)^{n+1}(n+2)(n+3)(n+4)x^{n+1}}{6} \cdot \frac{6}{(-1)^n x^n (n+1)(n+2)(n+3)} \right| \\ &= \lim_{n \to \infty} \left| x^{n+1-n} \cdot \frac{(n+2)(n+3)(n+4)}{(n+1)(n+2)(n+3)} \right| \\ &= |x| \lim_{n \to \infty} \left| \frac{n+4}{(n+1)} \right| \\ &= |x| \lim_{n \to \infty} \left| \frac{(1+4/n)}{(1+1/n)} \right| \\ &= |x| \cdot \frac{1+0}{1+0} = |x| < 1 \end{split}$$

So the series is absolutely convergent for |x| < 1 which means R = 1.

$$\frac{1}{(1+x)^4} = \sum_{n=0}^{\infty} (-1)^n \frac{(n+1)(n+2)(n+3)}{6} x^n, \quad |x| < 1.$$

 $f[x_] = 1/(1+x)^4$ Series[f[x], {x, 0, 5}]

Figure 4: Plots of $f(x) = 1/(1+x)^4$ (green) and the Taylor polynomial approximation centered at a = 0 of order 2 (red), and 100 (blue).