Example Find the Taylor series of $f(x)=e^{-x}$ about $x=0$.
The center of our Taylor series will be $a=0$. This means it could be called a MacLaurin series.
Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$. We will want the general form, so we should try and write things in ways in which the pattern becomes evident.

n	$f^{(n)}(x)$	$f^{(n)}(a)=f^{(n)}(0)$
0	e^{-x}	1
1	$-e^{-x}$	-1
2	$+e^{-x}$	+1
3	$-e^{-x}$	-1
\vdots	\vdots	\vdots
n	$(-1)^{n} e^{-x}$	$(-1)^{n}$

So we can see that the general form is $f^{(n)}(0)=(-1)^{n}$, since if we take an even derivative we get a positive number, and if we take an odd derivative the number is negative.

$$
c_{n}=\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{n}}{n!}
$$

The Taylor series is given by

$$
e^{-x}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}, \quad|x|<R
$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where $a_{n}=\frac{(-1)^{n}}{n!} x^{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+1}}{(n+1)!} \cdot \frac{n!}{(-1)^{n} x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|x \frac{n!}{(n+1)!}\right| \\
& =|x| \lim _{n \rightarrow \infty} \frac{1}{n+1} \\
& =|x| \cdot 0=0<1 \quad \text { for all } x .
\end{aligned}
$$

So the series is absolutely convergent for all values of x, which means $R=\infty$.

$$
e^{-x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}, \quad x \in(-\infty, \infty)
$$

This can be checked in Mathematica using:

```
f[x_] = Exp[-x]
Series[f[x], {x, 0, 5}]
```


Figure 1: Plots of $f(x)=e^{-x}$ (green) and the Taylor polynomial approximation of order 2 centered at $a=2$, $T_{2}(x)=\sum_{n=0}^{2} \frac{(-1)^{n}}{n!} x^{n}=1-x+\frac{x^{2}}{2}$ (red).

Example Find the Taylor series of $f(x)=e^{-x}$ about $x=3$.
The center of our Taylor series will be $a=3$.
Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$.

n	$f^{(n)}(x)$	$f^{(n)}(a)=f^{(n)}(3)$
0	e^{-x}	$1 e^{-3}$
1	$-e^{-x}$	$-1 e^{-3}$
2	$+e^{-x}$	$+1 e^{-3}$
3	$-e^{-x}$	$-1 e^{-3}$
\vdots	\vdots	\vdots
n	$(-1)^{n} e^{-x}$	$(-1)^{n} e^{-3}$

So we can see that the general form is $f^{(n)}(3)=(-1)^{n} e^{-3}$.

$$
c_{n}=\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{n}}{e^{3} n!}
$$

The Taylor series is given by

$$
e^{-x}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x-a)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{e^{3} n!}(x-3)^{n}, \quad|x-3|<R
$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where

$$
\begin{aligned}
& a_{n}=\frac{(-1)^{n}}{e^{3} n!}(x-3)^{n} . \\
& \begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(x-3)^{n+1}}{e^{3}(n+1)!} \cdot \frac{e^{3} n!}{(-1)^{n}(x-3)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|(x-3) \frac{n!}{(n+1)!}\right| \\
& =|x-3| \lim _{n \rightarrow \infty} \frac{1}{n+1} \\
& =|x-3| \cdot 0=0<1 \text { for all } x .
\end{aligned}
\end{aligned}
$$

So the series is absolutely convergent for all values of x, which means $R=\infty$.

$$
e^{-x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{e^{3} n!}(x-3)^{n}, \quad x \in(-\infty, \infty)
$$

This can be checked in Mathematica using:

```
f[x_] = Exp[-x]
Series[f[x], {x, 3, 5}]
```


Figure 2: Plots of $f(x)=e^{-x}$ (green) and the two Taylor polynomial approximations of order 2 , one centered at $a=0$ (red) and the other centered at $a=3$ (blue).

Example 11.10.12 Find the Taylor series of $f(x)=\ln x$ about $x=2$.
The center of our Taylor series will be $a=2$.
Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$.

n	$f^{(n)}(x)$	$f^{(n)}(a)=f^{(n)}(2)$
0	$\ln x$	$\ln 2$
1	x^{-1}	$1 / 2$
2	$-x^{-2}$	$-1 / 2^{2}$
3	$+2 x^{-3}$	$+2 / 2^{3}$
4	$-2 \cdot 3 x^{-4}$	$-2 \cdot 3 / 2^{4}$
\vdots	\vdots	\vdots
$n \neq 0$	$(-1)^{n+1}(n-1)!\frac{1}{x^{n}}$	$(-1)^{n+1}(n-1)!\frac{1}{2^{n}}$

So we can see that the general form is $f^{(n)}(2)=(-1)^{n+1}(n-1)!\frac{1}{2^{n}}$ if $n \neq 0$, and $f^{(0)}(2)=\ln 2$. Since the form changes, we will have to pull the $n=0$ term out of our sum.

$$
c_{n}=\frac{f^{(n)}(2)}{n!}=\frac{(-1)^{n+1}(n-1)!\frac{1}{2^{n}}}{n!}=\frac{(-1)^{n+1} \frac{1}{2^{n}}}{n}, n \neq 0 ; \quad c_{0}=\ln 2
$$

The Taylor series is given by

$$
\ln x=\ln 2+\sum_{n=1}^{\infty} \frac{f^{(n)}(2)}{n!}(x-2)^{n}=\ln 2+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n} n}(x-2)^{n}, \quad|x-2|<R
$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where $a_{n}=$ $\frac{(-1)^{n+1}}{2^{n} n}(x-2)^{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+2}(x-2)^{n+1}}{2^{n+1}(n+1)} \cdot \frac{2^{n} n}{(-1)^{n+1}(x-2)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|(x-2)^{n+1-n} 2^{n-n-1} \cdot \frac{n}{n+1}\right| \\
& =\frac{|x-2|}{2} \lim _{n \rightarrow \infty} \frac{n}{n+1} \\
& =\frac{|x-2|}{2} \lim _{n \rightarrow \infty} \frac{1}{1+1 / n} \\
& =\frac{|x-2|}{2} \cdot \frac{1}{1+0}=\frac{|x-2|}{2}<1
\end{aligned}
$$

So the series is absolutely convergent for $|x-2|<2$ which means $R=2$.

$$
\ln x=\ln 2+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n} n}(x-2)^{n}, \quad|x-2|<2
$$

This can be checked in Mathematica using:

```
f[x_] = Log[x]
Series[f[x], {x, 0, 5}]
```


Figure 3: Plots of $f(x)=\ln x$ (green) and the Taylor polynomial approximation of order 4 centered at $a=2$,
$T_{4}(x)=\ln 2+\sum_{n=1}^{4} \frac{(-1)^{n+1}}{2^{n} n}(x-2)^{n}$ (red).

Example 11.11.2 Find the Taylor series of $f(x)=1 /(1+x)^{4}$ about $x=0$.
The center of our Taylor series will be $a=0$.
Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$.

n	$f^{(n)}(x)$	$f^{(n)}(a)=f^{(n)}(0)$
0	$(1+x)^{-4}$	1
1	$-4(1+x)^{-5}$	-4
2	$4 \cdot 5(1+x)^{-6}$	$+4 \cdot 5$
3	$-4 \cdot 5 \cdot 6(1+x)^{-7}$	$-4 \cdot 5 \cdot 6$
4	$4 \cdot 5 \cdot 6 \cdot 7(1+x)^{-8}$	$+4 \cdot 5 \cdot 6 \cdot 7$
\vdots	\vdots	\vdots
n	$(-1)^{n} \frac{1}{2 \cdot 3}(n+3)!(1+x)^{n+4}$	$(-1)^{n} \frac{(n+3)!}{6}$

So we can see that the general form is $f^{(n)}(0)=(-1)^{n} \frac{(n+3)!}{6}$.

$$
c_{n}=\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{n} \frac{(n+3)!}{6}}{n!}=(-1)^{n} \frac{(n+1)(n+2)(n+3)}{6}
$$

The Taylor series is given by

$$
\frac{1}{(1+x)^{4}}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+1)(n+2)(n+3)}{6} x^{n}, \quad|x|<R .
$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where

$$
\begin{aligned}
& a_{n}=(-1)^{n} \frac{(n+1)(n+2)(n+3)}{6} x^{n} . \\
& \begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(n+2)(n+3)(n+4) x^{n+1}}{6} \cdot \frac{6}{(-1)^{n} x^{n}(n+1)(n+2)(n+3)}\right| \\
& =\lim _{n \rightarrow \infty}\left|x^{n+1-n} \cdot \frac{(n+2)(n+3)(n+4)}{(n+1)(n+2)(n+3)}\right| \\
& =|x| \lim _{n \rightarrow \infty}\left|\frac{(n+4)}{(n+1)}\right| \\
& =|x| \lim _{n \rightarrow \infty}\left|\frac{(1+4 / n)}{(1+1 / n)}\right| \\
& =|x| \cdot \frac{1+0}{1+0}=|x|<1
\end{aligned}
\end{aligned}
$$

So the series is absolutely convergent for $|x|<1$ which means $R=1$.

$$
\frac{1}{(1+x)^{4}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+1)(n+2)(n+3)}{6} x^{n}, \quad|x|<1 .
$$

$f\left[x_{-}\right]=1 /(1+x)^{\wedge} 4$
Series [f[x], \{x, 0, 5\}]

Figure 4: Plots of $f(x)=1 /(1+x)^{4}$ (green) and the Taylor polynomial approximation centered at $a=0$ of order 2 (red), and 100 (blue).

