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Example: The Alternating Harmonic Series Does the series

∞∑
n=1

(−1)n−1

n

converge or diverge?

Since this is an alternating series, we should use the alternating series test. First, we identify

an = (−1)n−1 1
n

, bn =
1
n

.

Since 1/(n + 1) < 1/n, we have that bn+1 < bn, so the condition bn+1 ≤ bn is satisfied.

Secondly, we have that limn→∞ bn = limn→∞ 1/n = 0.

So the two conditions of the alternating series test are satisfied, and the series
∑∞

n=1
(−1)n−1

n converges.

NOTE: The series
∑∞

n=1 bn =
∑∞

n=1 1/n is divergent. We can prove this by the integral test.

The integral test requires that we work with f(x), where
1) f(n) = bn,
and on the interval [1,∞), f(x) must be:
1) continuous,
2) positive,
3) decreasing.

So f(x) = 1/x, which is continuous, positive, and decreasing on [1,∞).

∫ ∞
1

f(x) dx =
∫ ∞

1

1
x

dx

= lim
b→∞

∫ b

1

1
x

dx

= lim
b→∞

lnx|b1
= lim

b→∞
(ln b− ln 1)

= lim
b→∞

ln b

= ∞

So the integral diverges. Therefore,
∑∞

n=1 1/n diverges by the integral theorem.
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Example How many terms are required to find the sum of the series

∞∑
n=1

(−1)n+1

n4

to 0.001 accuracy?

First, we have to check that the series converges by the alternating series test. Then we can use the remainder
estimate for the alternating series test.

Here, we have

an =
(−1)n+1

n4
, bn =

1
n4

.

Since 1/(n + 1)4 < 1/n4, we have that bn+1 < bn, so the condition bn+1 ≤ bn is satisfied.

Secondly, we have that limn→∞ bn = limn→∞ 1/n4 = 0.

So the two conditions of the alternating series test are satisfied, and the series
∑∞

n=1
(−1)n−1

n4 converges.

The remainder estimate for the alternating series test tells us that if we approximate the series sum s by the
partial sum sn, the error will be

|Rn| ≤ bn+1.

n bn

1 1.0
2 0.0625
3 0.0123457
4 0.003906
5 0.0016
6 0.00077

Since b6 < 0.001, we can say that

|Rn| ≤ bn+1

|R5| ≤ b6 = 0.00077

So using the first five terms will produce an accuracy of 0.001.
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Example Test the series for convergence or divergence

∞∑
n=1

sin(nπ/2)
n!

.

Although this doesn’t initially look like an alternating series, it is an alternating series since the sine function
alternates

∞∑
n=1

sin(nπ/2)
n!

= 1 + 0− 1
6

+ 0 +
1

120
+ 0− 1

5040
+ . . . = 1− 1

6
+

1
120

− 1
5040

+ . . . .

We therefore have

an =
sin(nπ/2)

n!

and since

∞∑
i=1

bn =
∞∑

i=1

∣∣∣∣ sin(nπ/2)
n!

∣∣∣∣ = 1 +
1
6

+
1

120
+

1
5040

+ . . .

=
∞∑

i=1

1
(2n− 1)!

−→ bn =
1

(2n− 1)!

Since
1

(2(n + 1)− 1)!
=

1
(2n + 1)!

<
1

(2n− 1)!
, we have that bn+1 < bn, so the condition bn+1 ≤ bn is

satisfied.

Secondly, we have that limn→∞ bn = limn→∞ 1/(2n− 1)! = 0.

So the two conditions of the alternating series test are satisfied, and the series
∑∞

n=1
sin(nπ/2)

n! converges.


