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Example 11.6.5 Is the series
∞∑

n=1

(−3)n

n3
absolutely convergent, conditionally convergent, or divergent?

We identify an =
(−3)n

n3
.

The an contains a power involving n, so we should try the root test.

lim
n→∞

(|an|)1/n = lim
n→∞

(∣∣∣∣ (−3)n

n3

∣∣∣∣)1/n

= lim
n→∞

(∣∣∣∣3n

n3

∣∣∣∣)1/n

= lim
n→∞

3
n3/n

So we need to know what happens to n3/n as n →∞. This will turn out to require logarithms to solve.

lim
n→∞

n3/n −→ ∞0 indeterminate power

y = n3/n

ln y = lnn3/n =
3
n

lnn

lim
n→∞

ln y = lim
n→∞

3
n

lnn −→ ∞
∞

indeterminate quotient

Now we should convert to the reals, since we want to use L’Hospital’s Rule to evaluate this integral.

lim
x→∞

ln y = 3 lim
x→∞

lnx

x
−→ ∞

∞
indeterminate quotient

= lim
x→∞

1/x

1
using L’Hospital’s Rule

= 0

We want the limit

lim
x→∞

y = lim
x→∞

eln y = elimx→∞ ln y = e0 = 1

So, since we had constructed the real function x3/x from the discrete n3/n, we can also say

lim
n→∞

n3/n = 1.

Therefore, we have

lim
n→∞

(|an|)1/n = lim
n→∞

3
n3/n

=
3
1

= 3 > 1

so the series
∑

an diverges by the root test.
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Example 11.6.7 Is the series
∞∑

n=1

(−1)n

5 + n
absolutely convergent, conditionally convergent, or divergent?

We identify an =
(−1)n

5 + n
.

The an is alternating, so we should try the alternating series test.

For the alternating series test, we also need to identify bn = |an| =
1

5 + n
.

Since bn+1 =
1

5 + n + 1
=

1
6 + n

<
1

5 + n
= bn the first condition for the alternating series test is satisfied.

Since lim
n→∞

bn = lim
n→∞

1
5 + n

= 0, the second condition for the alternating series test is satisfied.

Therefore, by the alternating series test, the series
∑

an converges.

But we need to check the convergence of the series
∑

bn to determine if the series
∑

an is conditionally
convergent (that is, convergent due to the fact that it alternates).

Let’s use the ratio test to check the series
∑

bn.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

5 + n

6 + n

= lim
n→∞

5/n + 1
6/n + 1

=
0 + 1
0 + 1

= 1

so the ratio test fails. All this means is we can’t use it.

Let’s try a limit comparison test instead. Let’s compare to the divergent p-series
∑

cn =
∑

1/n.

lim
n→∞

cn

bn
= lim

n→∞

5 + n

n
= lim

n→∞

(
5
n

+ 1
)

= 1 > 0 and finite.

Therefore, the since the comparison series
∑

cn was divergent, the series
∑

bn is also divergent.

Therefore,
∑

an is conditionally convergent since
∑

an converges and
∑
|an| =

∑
bn diverges.
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Example 11.6.8 Is the series
∞∑

n=1

(−1)n−1

n!
absolutely convergent, conditionally convergent, or divergent?

We identify an =
(−1)n−1

n!
.

The an contains a factorial, so we should first try the ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1
(n+1)!

1
n!

= lim
n→∞

n!
(n + 1)!

= lim
n→∞

1
n + 1

= 0 < 1

so the series
∑

an is absolutely convergent by the ratio test.

Example 11.6.16 Is the series
∞∑

n=1

(−1)n+1 n22n

n!
absolutely convergent, conditionally convergent, or diver-

gent?

We identify an = (−1)n+1 n22n

n!
.

The an contains a factorial, so we should first try the ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n + 1)22n+1

(n + 1)!
· n!
n22n

= lim
n→∞

2(n + 1)2

(n + 1)n2

= 2 lim
n→∞

n + 1
n2

= 2 lim
n→∞

(
1
n

+
1
n2

)
= 2(0 + 0) = 0 < 1

so the series
∑

an is absolutely convergent by the ratio test.
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Example 11.6.25 Is the series
∞∑

n=1

(
n2 + 1
2n2 + 1

)n

absolutely convergent, conditionally convergent, or diver-

gent?

We identify an =
(

n2 + 1
2n2 + 1

)n

.

The an contains a power involving n, so we should try the root test.

lim
n→∞

(|an|)1/n = lim
n→∞

(∣∣∣∣( n2 + 1
2n2 + 1

)n∣∣∣∣)1/n

= lim
n→∞

((
n2 + 1
2n2 + 1

)n)1/n

= lim
n→∞

n2 + 1
2n2 + 1

= lim
n→∞

1 + 1/n2

2 + 1/n2

=
1 + 0
2 + 0

=
1
2

< 1

so the series
∑

an is absolutely convergent by the root test.


