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Example 11.8.4 For the series Z %
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Let’s use the ratio test, with a,, = % It will tell us the radius of convergence.
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, find the radius of convergence and the interval of convergence.
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So |z| < 1 for absolute convergence. The center of this series is = a = 0, and the radius of convergence is
R=1.

We must check the endpoints separately to get the interval of convergence.
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We can test this series using the alternating series test. Identify b, = 1/(n + 1).
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1 = 0 the second condition is satisfied.
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Therefore, the series E ( +)1 converges by the alternating series test.
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r=-1: Z (=D"(=1) = Z - = Z o which is a p-series, with p = 1 so it diverges.
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The interval of convergence for the series Z ( ) is I =(-1,1].
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Example 11.8.38 Suppose that the radius of convergence of the power series > ¢,z™ is R. What is the
radius of convergence of the power series Y ¢, x%"?
Both these series have a center of z = a = 0.

Since Y ¢, 2™ has a radius of convergence R, we know that the series converges for all |z —a| < R, or |z| < R
in this case.
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The second series is . ¢, 2" = Y ¢, (2?)™. This is the same form as the first series, with z replaced by x2.
Therefore the new series will have a radius of convergence which satisfies |#2| < R, or |z| < V/R.

The radius of convergence of the new series is vV R.
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Example For the series Z ( ) , find the radius of convergence and the interval of convergence.
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Let’s use the ratio test, with a,, = ()(%) It will tell us the radius of convergence.
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Therefore, for the series to be absolutely convergent, we require |z 4 2| < 1. From this, we can say the series
has a center of a = —2, and a radius of convergence of R = 1.

We need to check the endpoints separately. The endpoints of the region are found by expanding |z + 2| < 1:

1< z+2 <1
-1-2< x <1-2
-3 < T < -1

0 —1)" (=3 + 2)» e —1)2n > 1
T = -3 7;0 % = nZ:O (n +)1 = nZ:O w1 This is the divergent harmonic series (p-series
with p = 1).
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We can test this series using the alternating series test. Identify b, = 1/(n + 1).
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Since lim b, = lim = 0 the second condition is satisfied.
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Therefore, the series g ( +)1 converges by the alternating series test.
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The interval of convergence for the series E 1 is I =(-3,-1].
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