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Example 11.8.4 For the series
∞∑

n=0

(−1)nxn

n + 1
, find the radius of convergence and the interval of convergence.

Let’s use the ratio test, with an =
(−1)nxn

n + 1
. It will tell us the radius of convergence.

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣
(−1)n+1xn+1

n + 2
· n + 1
(−1)nxn

∣∣∣∣

= lim
n→∞

∣∣∣∣xn+1−n n + 1
n + 2

∣∣∣∣

= |x| lim
n→∞

n + 1
n + 2

= |x| lim
n→∞

1 + 1/n

1 + 2/n

= |x|1 + 0
1 + 0

= |x|

So |x| < 1 for absolute convergence. The center of this series is x = a = 0, and the radius of convergence is
R = 1.

We must check the endpoints separately to get the interval of convergence.

x = 1:
∞∑

n=0

(−1)n

n + 1

We can test this series using the alternating series test. Identify bn = 1/(n + 1).

Since bn+1 =
1

n + 2
<

1
n + 1

= bn, the first condition is satisfied.

Since lim
n→∞

bn = lim
n→∞

1
n + 1

= 0 the second condition is satisfied.

Therefore, the series
∞∑

n=0

(−1)n

n + 1
converges by the alternating series test.

x = −1:
∞∑

n=0

(−1)n(−1)n

n + 1
=

∞∑
n=0

1
n + 1

=
∞∑

m=1

1
m

which is a p-series, with p = 1 so it diverges.

The interval of convergence for the series
∞∑

n=0

(−1)nxn

n + 1
is I = (−1, 1].

Example 11.8.38 Suppose that the radius of convergence of the power series
∑

cnxn is R. What is the
radius of convergence of the power series

∑
cnx2n?

Both these series have a center of x = a = 0.

Since
∑

cnxn has a radius of convergence R, we know that the series converges for all |x−a| < R, or |x| < R
in this case.
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The second series is
∑

cnx2n =
∑

cn(x2)n. This is the same form as the first series, with x replaced by x2.
Therefore the new series will have a radius of convergence which satisfies |x2| < R, or |x| < √

R.

The radius of convergence of the new series is
√

R.

Example For the series
∞∑

n=0

(−1)n(x + 2)n

n + 1
, find the radius of convergence and the interval of convergence.

Let’s use the ratio test, with an =
(−1)n(x + 2)n

n + 1
. It will tell us the radius of convergence.

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣
(−1)n+1(x + 2)n+1

n + 2
· n + 1
(−1)n(x + 2)n

∣∣∣∣

= |x + 2| lim
n→∞

n + 1
n + 2

= |x + 2| lim
n→∞

1 + 1/n

1 + 2/n

= |x + 2|
(

1 + 0
1 + 0

)
= |x + 2|

Therefore, for the series to be absolutely convergent, we require |x+2| < 1. From this, we can say the series
has a center of a = −2, and a radius of convergence of R = 1.

We need to check the endpoints separately. The endpoints of the region are found by expanding |x + 2| < 1:

−1 < x + 2 < 1
−1− 2 < x < 1− 2

−3 < x < −1

x = −3:
∞∑

n=0

(−1)n(−3 + 2)n

n + 1
=

∞∑
n=0

(−1)2n

n + 1
=

∞∑
n=0

1
n + 1

. This is the divergent harmonic series (p-series

with p = 1).

x = −1:
∞∑

n=0

(−1)n(−1 + 2)n

n + 1
=

∞∑
n=0

(−1)n

n + 1
.

We can test this series using the alternating series test. Identify bn = 1/(n + 1).

Since bn+1 =
1

n + 2
<

1
n + 1

= bn, the first condition is satisfied.

Since lim
n→∞

bn = lim
n→∞

1
n + 1

= 0 the second condition is satisfied.

Therefore, the series
∞∑

n=0

(−1)n

n + 1
converges by the alternating series test.

The interval of convergence for the series
∞∑

n=0

(−1)n(x + 2)n

n + 1
is I = (−3,−1].


