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Sequences: {an}
• The limit of a sequence lim

n→∞
an. If you use derivatives (L’Hospital’s Rule) to evaluate limit, you must convert to a

real function f(x) where f(n) = an.
• Definitions of increasing, decreasing, monotonic.
• Definitions of bounded above, bounded below, bounded.
• To prove a sequence is decreasing, bn+1 ≤ bn, it is sometimes helpful to switch to a real valued function f(x) and

show f ′(x) < 0.
• Monotonic Sequence Theorem: every bounded, monotonic sequence is convergent.
• The Test will not include mathematical induction.

Series:
∑

an

• Sequence of partial sums sn =

n∑
i=1

ai. Note this means an = sn − sn−1.

• To find the sum of

∞∑
i=1

ai, we compute lim
n→∞

sn.

• To sum a series, we need to get rid of the summation in sn so we can take the limit (geometric, telescoping series).
• Types of convergence:∑

an is convergent if
∑

an converges.∑
an is absolutely convergent if

∑
|an| converges.∑

an is conditionally convergent if
∑

an converges and
∑
|an| diverges.

Two Very Good Test Series

The geometric series

∞∑
n=1

rn−1 converges to 1
1−r if |r| < 1. Divergent for |r| ≥ 1. You should be able to prove this.

The p-series

∞∑
n=1

1

np
is convergent if p > 1. This can be shown with Integral Test.

The Seven Tests for Convergence or Divergence of a Series
∑

an

Test for Divergence (pg 692) (if you notice limn→∞ 6= 0)

If lim
n→∞

an 6= 0, then
∑

an diverges.

Integral Test (pg 699) (if you notice an = f(n) means
∫∞
c

f(x) dx can be evaluated (check f is cont., pos., dec.))

Construct f(x) from an so that f(n) = an. Then check that f(x) is continuous, positive, and decreasing on the
interval [c,∞). If this is all true, then you may use the integral test.

If
∫∞
c

f(x) dx converges, then

∞∑
n=c

an converges.

If
∫∞
c

f(x) dx diverges, then

∞∑
n=c

an diverges.

Comparison Test (pg 705) (if an looks like a geometric series or p-series, rational expression)

First, make sure that
∑

an and
∑

bn have positive terms. If so, you can use the the comparison test.

If
∑

bn is convergent and an ≤ bn for all n, then
∑

an is convergent.
If
∑

bn is divergent and an ≥ bn for all n, then
∑

an is divergent.
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Limit Comparison Test (pg 707) (if an looks like a geometric series or p-series, rational expression)

First, make sure that
∑

an and
∑

bn have positive terms. If so, you can use the the limit comparison test.

If lim
n→∞

an
bn

= c, c > 0 and finite, then either both series diverge or both converge.

Alternating Series Test (pg 710) (if series is an alternating series)

If the alternating series

∞∑
n=1

(−1)n−1bn, bn > 0, satisfies

1. bn+1 ≤ bn for all n, and

2. limn→∞ bn = 0,

then the series

∞∑
n=1

(−1)n−1bn is convergent.

The Ratio Test (pg 716) (if series has a factorial, or series contains (r)n (r 6= −1))

If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L

 < 1 then
∑

an is absolutely convergent
> 1 then

∑
an diverges

= 1 the test fails

The Root Test (pg 718) (if series is an = (bn)n)

If lim
n→∞

(|an|)1/n = L

 < 1 then
∑

an is absolutely convergent
> 1 then

∑
an diverges

= 1 the test fails

Two Remainder Estimate Theorems

Remainder Estimate for the Integral Test (pg 701)

If the series
∑

an can be proven convergent using the integral test, then the remainder when using sn to
approximate the sum is the series is bounded by∫ ∞

n+1

f(x) dx ≤ Rn ≤
∫ ∞
n

f(x) dx

If we add sn to the inequalities, we get upper and lower bounds for the sum:

sn +

∫ ∞
n+1

f(x) dx ≤ s ≤ sn +

∫ ∞
n

f(x) dx

Alternating Series Estimation Theorem (pg 712)

If s =
∑

(−1)n−1bn, bn > 0, is the sum of an alternating series that satisfies

1. bn+1 ≤ bn for all n, and

2. limn→∞ bn = 0,

then

|Rn| = |s− sn| ≤ bn+1.
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How to choose a test when checking
∑

an for convergence

• There may be more than one test that will work.
• These are guidelines, not absolute rules.
• The tests don’t find the sum of the series, they just tell you if the series is convergent/divergent.
• Practice is how to get good at this.

Advice For Comparison Tests: To decide which comparison test to use on
∑

an:

• Examine an to see if as n→∞ the dominant terms look like a geometric or p-series.
• If so, use The Limit Comparison Test with comparison series bn chosen from the dominant terms.
• If not, use The Comparison Test and build the comparison series bn from the original series.

Is
∑

an a p-series or a geometric series?
Yes−→

Use p-series result:
∞∑

n=1

1

np
converges if p > 1. Diverges otherwise.

Use geometric series result:
∞∑

n=1

rn−1 =
1

1− r
if |r| < 1. Diverges otherwise.

Is it obvious that lim
n→∞

an 6= 0? Yes−→ Try the Test for Divergence.

Is
∑

an like a p-series or geometric series, and has
positive terms?

Yes−→ Try Limit Comparison Test or Comparison Test.

Is an a rational expression, or involves roots of poly-
nomials?

Yes−→ Try Limit Comparison Test or Comparison Test.

Is
∑

an an alternating series?
Yes−→ Try Alternating Series Test.

Does an have factorials or constants raised to the nth

power?
Yes−→ Try Ratio Test.

Does an = (bn)n ?
Yes−→ Try Root Test.

Is an = f(n) where f(x) is continuous, positive, and

decreasing and

∫ ∞
1

f(x) dx can be easily evaluated?
Yes−→ Try Integral Test.
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On the Test, be prepared to (among other things, but these are most important):

• determine if a given series is absolutely convergent, conditionally convergent, or divergent,
• evaluate limits using l’Hospital’s Rule or other techniques,
• demonstrate understanding of the concepts relating to sequences and series,
• prove the convergence result for the geometric series, in general and for specific geometric series,
• sum a telescoping series using partial fractions,
• prove the test for divergence,
• prove the remainder estimate for the integral test,
• do integrals (needed for the integral test, so parts and u-sub are most likely to occur).

Evaluating Limits

If limx→∞
f(x)
g(x) is an indeterminant quotient (∞∞ or 0

0 ) , then by l’Hospital’s Rule:

lim
x→∞

f(x)

g(x)
= lim

x→∞

d
dx [f(x)]
d
dx [g(x)]

.

Divide by highest power of n for rational expressions:

lim
x→∞

14n2 + 17

2n2 − 3n + 2
= lim

x→∞

14 + 17
n2

2− 3
n + 2

n2

=
14 + 0

2− 0 + 0
= 7

Limits for indeterminant powers can usually be avoided by switching to a Ratio Test from a Root Test, but they can be
evaluated using logarithms:

lim
x→∞

x1/x →∞0 (indeterminant power)

y = x1/x

ln y =
lnx

x

lim
x→∞

ln y = lim
x→∞

lnx

x
−→ ∞

∞

lim
x→∞

ln y = lim
x→∞

1

x
= 0 (l’Hospital’s Rule)

lim
x→∞

eln y = e0

lim
x→∞

y = 1

Factorials

The factorial is defined as n! = 1 · 2 · · · · (n− 1)(n). Note that 0! = 1 and 1! = 1.

To simplify factorials, expand and cancel:

(4n)!

(4n + 2)!
= ���(4n)!

���(4n)!(4n + 1)(4n + 2)
=

1

(4n + 1)(4n + 2)

Integration

∫ ∞
1

xe−x
2

dx = lim
t→∞

∫ t

1

xe−x
2

dx = −1

2
lim
t→∞

∫ −t2
−1

eudu = −1

2
lim
t→∞

(
eu
)−t2
−1

= −1

2
lim
t→∞

(e−t
2

− e−1) =
1

2e

sub u = −x2, so du = −2x dx, and when x = 1, u = −1 and x = t, u = −t2.


