Sequences: $\{a_n\}$

- The limit of a sequence $\lim_{n\to\infty} a_n$. If you use derivatives (L'Hospital's Rule) to evaluate limit, you must convert to a real function f(x) where $f(n) = a_n$.
- Definitions of increasing, decreasing, monotonic.
- Definitions of bounded above, bounded below, bounded.
- To prove a sequence is decreasing, $b_{n+1} \leq b_n$, it is sometimes helpful to switch to a real valued function f(x) and show f'(x) < 0.
- Monotonic Sequence Theorem: every bounded, monotonic sequence is convergent.
- The Test will not include mathematical induction.

Series: $\sum a_n$

- Sequence of partial sums $s_n = \sum_{i=1}^n a_i$. Note this means $a_n = s_n s_{n-1}$.
- To find the sum of $\sum_{i=1}^{\infty} a_i$, we compute $\lim_{n \to \infty} s_n$.
- To sum a series, we need to get rid of the summation in s_n so we can take the limit (geometric, telescoping series).
- Types of convergence:
- $\sum_{n=1}^{\infty} a_n \text{ is <u>convergent</u> if } \sum_{n=1}^{\infty} a_n \text{ converges.}$ $\sum_{n=1}^{\infty} a_n \text{ is <u>absolutely convergent</u> if } \sum_{n=1}^{\infty} |a_n| \text{ converges.}$ $\sum_{n=1}^{\infty} a_n \text{ is <u>conditionally convergent}</u> if } \sum_{n=1}^{\infty} a_n \text{ converges and } \sum_{n=1}^{\infty} |a_n| \text{ diverges.}$

Two Very Good Test Series

The geometric series $\sum_{n=1}^{\infty} r^{n-1}$ converges to $\frac{1}{1-r}$ if |r| < 1. Divergent for $|r| \ge 1$. You should be able to prove this. The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1. This can be shown with Integral Test.

The Seven Tests for Convergence or Divergence of a Series $\sum a_n$

Test for Divergence (pg 692) (if you notice $\lim_{n\to\infty} \neq 0$)

If $\lim_{n \to \infty} a_n \neq 0$, then $\sum a_n$ diverges.

Integral Test (pg 699) (if you notice $a_n = f(n)$ means $\int_c^{\infty} f(x) dx$ can be evaluated (check f is cont., pos., dec.))

Construct f(x) from a_n so that $f(n) = a_n$. Then check that f(x) is continuous, positive, and decreasing on the interval $[c, \infty)$. If this is all true, then you may use the integral test.

If
$$\int_{c}^{\infty} f(x) dx$$
 converges, then $\sum_{n=c}^{\infty} a_{n}$ converges.
If $\int_{c}^{\infty} f(x) dx$ diverges, then $\sum_{n=c}^{\infty} a_{n}$ diverges.

Comparison Test (pg 705) (if a_n looks like a geometric series or *p*-series, rational expression)

First, make sure that $\sum a_n$ and $\sum b_n$ have positive terms. If so, you can use the comparison test. If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is convergent. If $\sum b_n$ is divergent and $a_n \geq b_n$ for all n, then $\sum a_n$ is divergent.

Limit Comparison Test (pg 707) (if a_n looks like a geometric series or p-series, rational expression)

First, make sure that $\sum a_n$ and $\sum b_n$ have positive terms. If so, you can use the limit comparison test. If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$, c > 0 and finite, then either both series diverge or both converge.

Alternating Series Test (pg 710) (if series is an alternating series)

If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$, $b_n > 0$, satisfies 1. $b_{n+1} \leq b_n$ for all n, and 2. $\lim_{n\to\infty} b_n = 0$, then the series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ is convergent.

The Ratio Test (pg 716) (if series has a factorial, or series contains $(r)^n (r \neq -1)$)

If
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L \begin{cases} < 1 & \text{then } \sum a_n \text{ is absolutely convergent} \\ > 1 & \text{then } \sum a_n \text{ diverges} \\ = 1 & \text{the test fails} \end{cases}$$

The Root Test (pg 718) (if series is $a_n = (b_n)^n$)

If $\lim_{n \to \infty} (|a_n|)^{1/n} = L \begin{cases} < 1 & \text{then } \sum a_n \text{ is absolutely convergent} \\ > 1 & \text{then } \sum a_n \text{ diverges} \\ = 1 & \text{the test fails} \end{cases}$

Two Remainder Estimate Theorems

Remainder Estimate for the Integral Test (pg 701)

If the series $\sum a_n$ can be proven convergent using the integral test, then the remainder when using s_n to approximate the sum is the series is bounded by

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_n^{\infty} f(x) \, dx$$

If we add s_n to the inequalities, we get upper and lower bounds for the sum:

$$s_n + \int_{n+1}^{\infty} f(x) \, dx \le s \le s_n + \int_n^{\infty} f(x) \, dx$$

Alternating Series Estimation Theorem (pg 712)

If $s = \sum (-1)^{n-1} b_n$, $b_n > 0$, is the sum of an alternating series that satisfies

1. $b_{n+1} \leq b_n$ for all n, and

2. $\lim_{n\to\infty} b_n = 0$,

then

 $|R_n| = |s - s_n| \le b_{n+1}.$

How to choose a test when checking $\sum a_n$ for convergence

- There may be more than one test that will work.
- These are guidelines, not absolute rules.
- The tests don't find the sum of the series, they just tell you if the series is convergent/divergent.
- Practice is how to get good at this.

Advice For Comparison Tests: To decide which comparison test to use on $\sum a_n$:

- Examine a_n to see if as $n \to \infty$ the dominant terms look like a geometric or *p*-series.
- If so, use <u>The Limit Comparison Test</u> with comparison series b_n chosen from the dominant terms.
- If not, use <u>The Comparison Test</u> and <u>build the comparison series b_n from the original series</u>.

On the Test, be prepared to (among other things, but these are most important):

- determine if a given series is absolutely convergent, conditionally convergent, or divergent,
- evaluate limits using l'Hospital's Rule or other techniques,
- demonstrate understanding of the concepts relating to sequences and series,
- prove the convergence result for the geometric series, in general and for specific geometric series,
- sum a telescoping series using partial fractions,
- prove the test for divergence,
- prove the remainder estimate for the integral test,
- do integrals (needed for the integral test, so parts and *u*-sub are most likely to occur).

Evaluating Limits

If $\lim_{x\to\infty} \frac{f(x)}{q(x)}$ is an indeterminant quotient $\left(\frac{\infty}{\infty} \text{ or } \frac{0}{0}\right)$, then by l'Hospital's Rule:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\frac{d}{dx}[f(x)]}{\frac{d}{dx}[g(x)]}.$$

Divide by highest power of n for rational expressions:

$$\lim_{x \to \infty} \frac{14n^2 + 17}{2n^2 - 3n + 2} = \lim_{x \to \infty} \frac{14 + \frac{17}{n^2}}{2 - \frac{3}{n} + \frac{2}{n^2}} = \frac{14 + 0}{2 - 0 + 0} = 7$$

Limits for indeterminant powers can usually be avoided by switching to a Ratio Test from a Root Test, but they can be evaluated using logarithms:

$$\begin{split} \lim_{x \to \infty} x^{1/x} &\to \infty^0 \text{ (indeterminant power)} \\ y &= x^{1/x} \\ \ln y &= \frac{\ln x}{x} \\ \lim_{x \to \infty} \ln y &= \lim_{x \to \infty} \frac{\ln x}{x} \longrightarrow \frac{\infty}{\infty} \\ \lim_{x \to \infty} \ln y &= \lim_{x \to \infty} \frac{1}{x} = 0 \text{ (l'Hospital's Rule)} \\ \lim_{x \to \infty} e^{\ln y} &= e^0 \\ \lim_{x \to \infty} y &= 1 \end{split}$$

Factorials

The factorial is defined as $n! = 1 \cdot 2 \cdots (n-1)(n)$. Note that 0! = 1 and 1! = 1.

To simplify factorials, expand and cancel:

$$\frac{(4n)!}{(4n+2)!} = \frac{(4n)!}{(4n)!(4n+1)(4n+2)} = \frac{1}{(4n+1)(4n+2)}$$

Integration

$$\int_{1}^{\infty} x e^{-x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} x e^{-x^{2}} dx = -\frac{1}{2} \lim_{t \to \infty} \int_{-1}^{-t^{2}} e^{u} du = -\frac{1}{2} \lim_{t \to \infty} \left(e^{u} \right)_{-1}^{-t^{2}} = -\frac{1}{2} \lim_{t \to \infty} \left(e^{-t^{2}} - e^{-1} \right) = \frac{1}{2e}$$

sub $u = -x^{2}$, so $du = -2x \, dx$, and when $x = 1, u = -1$ and $x = t, u = -t^{2}$.