Sequences: $\left\{a_{n}\right\}$

- The limit of a sequence $\lim _{n \rightarrow \infty} a_{n}$. If you use derivatives (L'Hospital's Rule) to evaluate limit, you must convert to a real function $f(x)$ where $f(n)=a_{n}$.
- Definitions of increasing, decreasing, monotonic.
- Definitions of bounded above, bounded below, bounded.
- To prove a sequence is decreasing, $b_{n+1} \leq b_{n}$, it is sometimes helpful to switch to a real valued function $f(x)$ and show $f^{\prime}(x)<0$.
- Monotonic Sequence Theorem: every bounded, monotonic sequence is convergent.
- The Test will not include mathematical induction.

Series: $\sum a_{n}$

- Sequence of partial sums $s_{n}=\sum_{i=1}^{n} a_{i}$. Note this means $a_{n}=s_{n}-s_{n-1}$.
- To find the sum of $\sum_{i=1}^{\infty} a_{i}$, we compute $\lim _{n \rightarrow \infty} s_{n}$.
- To sum a series, we need to get rid of the summation in s_{n} so we can take the limit (geometric, telescoping series).
- Types of convergence:
$\sum a_{n}$ is convergent if $\sum a_{n}$ converges.
$\sum a_{n}$ is $\underline{\text { absolutely convergent }}$ if $\sum\left|a_{n}\right|$ converges.
$\sum a_{n}$ is conditionally convergent if $\sum a_{n}$ converges and $\sum\left|a_{n}\right|$ diverges.

Two Very Good Test Series

The geometric series $\sum_{n=1}^{\infty} r^{n-1}$ converges to $\frac{1}{1-r}$ if $|r|<1$. Divergent for $|r| \geq 1$. You should be able to prove this.
The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$. This can be shown with Integral Test.

The Seven Tests for Convergence or Divergence of a Series $\sum a_{n}$

Test for Divergence (pg 692) (if you notice $\lim _{n \rightarrow \infty} \neq 0$)
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum a_{n}$ diverges.
Integral Test (pg 699) (if you notice $a_{n}=f(n)$ means $\int_{c}^{\infty} f(x) d x$ can be evaluated (check f is cont., pos., dec.))
Construct $f(x)$ from a_{n} so that $f(n)=a_{n}$. Then check that $f(x)$ is continuous, positive, and decreasing on the interval $[c, \infty)$. If this is all true, then you may use the integral test.
If $\int_{c}^{\infty} f(x) d x$ converges, then $\sum_{n=c}^{\infty} a_{n}$ converges.
If $\int_{c}^{\infty} f(x) d x$ diverges, then $\sum_{n=c}^{\infty} a_{n}$ diverges.
Comparison Test (pg 705) (if a_{n} looks like a geometric series or p-series, rational expression)
First, make sure that $\sum a_{n}$ and $\sum b_{n}$ have positive terms. If so, you can use the the comparison test.
If $\sum b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ is convergent.
If $\sum b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n, then $\sum a_{n}$ is divergent.

Limit Comparison Test (pg 707) (if a_{n} looks like a geometric series or p-series, rational expression)
First, make sure that $\sum a_{n}$ and $\sum b_{n}$ have positive terms. If so, you can use the the limit comparison test. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c, c>0$ and finite, then either both series diverge or both converge.

Alternating Series Test (pg 710) (if series is an alternating series)
If the alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}, \quad b_{n}>0$, satisfies

1. $b_{n+1} \leq b_{n}$ for all n, and
2. $\lim _{n \rightarrow \infty} b_{n}=0$,
then the series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ is convergent.
The Ratio Test (pg 716) (if series has a factorial, or series contains $\left.(r)^{n}(r \neq-1)\right)$

$$
\text { If } \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L \begin{cases}<1 & \text { then } \sum a_{n} \text { is absolutely convergent } \\ >1 & \text { then } \sum a_{n} \text { diverges } \\ =1 & \text { the test fails }\end{cases}
$$

The Root Test (pg 718) (if series is $a_{n}=\left(b_{n}\right)^{n}$)

$$
\text { If } \lim _{n \rightarrow \infty}\left(\left|a_{n}\right|\right)^{1 / n}=L \begin{cases}<1 & \text { then } \sum a_{n} \text { is absolutely convergent } \\ >1 & \text { then } \sum a_{n} \text { diverges } \\ =1 & \text { the test fails }\end{cases}
$$

Two Remainder Estimate Theorems

Remainder Estimate for the Integral Test (pg 701)
If the series $\sum a_{n}$ can be proven convergent using the integral test, then the remainder when using s_{n} to approximate the sum is the series is bounded by

$$
\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

If we add s_{n} to the inequalities, we get upper and lower bounds for the sum:

$$
s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x
$$

Alternating Series Estimation Theorem (pg 712)

If $s=\sum(-1)^{n-1} b_{n}, b_{n}>0$, is the sum of an alternating series that satisfies

1. $b_{n+1} \leq b_{n}$ for all n, and
2. $\lim _{n \rightarrow \infty} b_{n}=0$,
then

$$
\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}
$$

How to choose a test when checking $\sum a_{n}$ for convergence

- There may be more than one test that will work.
- These are guidelines, not absolute rules.
- The tests don't find the sum of the series, they just tell you if the series is convergent/divergent.
- Practice is how to get good at this.

Advice For Comparison Tests: To decide which comparison test to use on $\sum a_{n}$:

- Examine a_{n} to see if as $n \rightarrow \infty$ the dominant terms look like a geometric or p-series.
- If so, use The Limit Comparison Test with comparison series b_{n} chosen from the dominant terms.
- If not, use The Comparison Test and build the comparison series b_{n} from the original series.

Is $\sum a_{n}$ a p-series or a geometric series?	$\xrightarrow{\text { Yes }}$
	Use p-series result: $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$. Diverges otherwise. Use geometric series result: $\sum_{n=1}^{\infty} r^{n-1}=\frac{1}{1-r}$ if $\|r\|<1$. Diverges otherwise.

Is it obvious that $\lim _{n \rightarrow \infty} a_{n} \neq 0 ? \xrightarrow{\text { Yes }}$

Try the Test for Divergence.

Is $\sum a_{n}$ like a p-series or geometric series, and has positive terms?
$\xrightarrow{\mathrm{Yes}}$
Try Limit Comparison Test or Comparison Test.

Is a_{n} a rational expression, or involves roots of poly- $\xrightarrow{\text { Yes }}$ nomials?

Try Limit Comparison Test or Comparison Test.
Is $\sum a_{n}$ an alternating series? $\xrightarrow{\text { Yes }}$

Try Alternating Series Test.

Does a_{n} have factorials or constants raised to the $n^{\text {th }} \quad \xrightarrow{\text { Yes }}$ power?

Try Ratio Test.
Does $a_{n}=\left(b_{n}\right)^{n} ? \quad \xrightarrow{\text { Yes }}$

Try Root Test.

Is $a_{n}=f(n)$ where $f(x)$ is continuous, positive, and decreasing and $\int_{1}^{\infty} f(x) d x$ can be easily evaluated?

On the Test, be prepared to (among other things, but these are most important):

- determine if a given series is absolutely convergent, conditionally convergent, or divergent,
- evaluate limits using l'Hospital's Rule or other techniques,
- demonstrate understanding of the concepts relating to sequences and series,
- prove the convergence result for the geometric series, in general and for specific geometric series,
- sum a telescoping series using partial fractions,
- prove the test for divergence,
- prove the remainder estimate for the integral test,
- do integrals (needed for the integral test, so parts and u-sub are most likely to occur).

Evaluating Limits

If $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$ is an indeterminant quotient ($\frac{\infty}{\infty}$ or $\frac{0}{0}$), then by l'Hospital's Rule:

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}[f(x)]}{\frac{d}{d x}[g(x)]} .
$$

Divide by highest power of n for rational expressions:

$$
\lim _{x \rightarrow \infty} \frac{14 n^{2}+17}{2 n^{2}-3 n+2}=\lim _{x \rightarrow \infty} \frac{14+\frac{17}{n^{2}}}{2-\frac{3}{n}+\frac{2}{n^{2}}}=\frac{14+0}{2-0+0}=7
$$

Limits for indeterminant powers can usually be avoided by switching to a Ratio Test from a Root Test, but they can be evaluated using logarithms:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x^{1 / x} & \rightarrow \infty^{0} \text { (indeterminant power) } \\
y & =x^{1 / x} \\
\ln y & =\frac{\ln x}{x} \\
\lim _{x \rightarrow \infty} \ln y & =\lim _{x \rightarrow \infty} \frac{\ln x}{x} \longrightarrow \frac{\infty}{\infty} \\
\lim _{x \rightarrow \infty} \ln y & =\lim _{x \rightarrow \infty} \frac{1}{x}=0 \text { (l'Hospital's Rule) } \\
\lim _{x \rightarrow \infty} e^{\ln y} & =e^{0} \\
\lim _{x \rightarrow \infty} y & =1
\end{aligned}
$$

Factorials

The factorial is defined as $n!=1 \cdot 2 \cdots(n-1)(n)$. Note that $0!=1$ and $1!=1$.
To simplify factorials, expand and cancel:

$$
\frac{(4 n)!}{(4 n+2)!}=\frac{(4 n)!}{(4 n)!(4 n+1)(4 n+2)}=\frac{1}{(4 n+1)(4 n+2)}
$$

Integration

$$
\int_{1}^{\infty} x e^{-x^{2}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} x e^{-x^{2}} d x=-\frac{1}{2} \lim _{t \rightarrow \infty} \int_{-1}^{-t^{2}} e^{u} d u=-\frac{1}{2} \lim _{t \rightarrow \infty}\left(e^{u}\right)_{-1}^{-t^{2}}=-\frac{1}{2} \lim _{t \rightarrow \infty}\left(e^{-t^{2}}-e^{-1}\right)=\frac{1}{2 e}
$$

sub $u=-x^{2}$, so $d u=-2 x d x$, and when $x=1, u=-1$ and $x=t, u=-t^{2}$.

